高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半椭球堵流结构对窄通道流动传热特性的大涡模拟研究

刘珺瑞 熊进标

刘珺瑞, 熊进标. 半椭球堵流结构对窄通道流动传热特性的大涡模拟研究[J]. 核动力工程, 2024, 45(3): 116-123. doi: 10.13832/j.jnpe.2024.03.0116
引用本文: 刘珺瑞, 熊进标. 半椭球堵流结构对窄通道流动传热特性的大涡模拟研究[J]. 核动力工程, 2024, 45(3): 116-123. doi: 10.13832/j.jnpe.2024.03.0116
Liu Junrui, Xiong Jinbiao. Large Eddy Simulation Study on Flow and Heat Transfer in Narrow Channel with a Semi-ellipsoid Blockage[J]. Nuclear Power Engineering, 2024, 45(3): 116-123. doi: 10.13832/j.jnpe.2024.03.0116
Citation: Liu Junrui, Xiong Jinbiao. Large Eddy Simulation Study on Flow and Heat Transfer in Narrow Channel with a Semi-ellipsoid Blockage[J]. Nuclear Power Engineering, 2024, 45(3): 116-123. doi: 10.13832/j.jnpe.2024.03.0116

半椭球堵流结构对窄通道流动传热特性的大涡模拟研究

doi: 10.13832/j.jnpe.2024.03.0116
详细信息
    作者简介:

    刘珺瑞(1999—),女,硕士研究生,现主要从事先进反应堆热工水力方面的研究,E-mail: LiuJunrui@sjtu.edu.cn

    通讯作者:

    熊进标,E-mail: xiongjinbiao@sjtu.edu.cn

  • 中图分类号: TL331

Large Eddy Simulation Study on Flow and Heat Transfer in Narrow Channel with a Semi-ellipsoid Blockage

  • 摘要: 为研究半椭球堵流结构对窄通道内冷却剂流动传热特性的影响,针对高度为窄边宽1/2的半椭球堵流结构开展了大涡模拟,分析了堵流结构下游的时均速度场、湍动能和温度分布,研究了堵流结构附近的流动传热特征。半椭球堵流结构下游流场有显著的三维特性,存在绕流及边界层分离形成的回流区、剪切层、主流区和再发展区等特征区域。结合时均温度场及局部努塞尔数(Nu)的变化规律,研究了堵流结构对窄通道传热的影响机制。分析发现,半椭球底面侧壁面附近回流区及其顶部壁面再发展区内,由于热流体聚集,缺乏主流低温流体冲扫,出现局部Nu极小值和局部高温。总体上看,半椭球堵流结构对窄通道速度场和温度场的展向影响范围为5倍半椭球长半轴范围。

     

  • 图  1  计算域

    Figure  1.  Computation Domain

    图  2  LES与实验结果对比

    W—流向流速,m/s;Wmax—最大流向流速,m/s

    Figure  2.  Comparison between LES and the Experiment

    图  3  平面截面位置示意图

    Figure  3.  Location of the Measuring Plane

    图  4  中心平面时均流向流速和时均湍动能分布

    Figure  4.  Time-averaged Streamwise Velocity and Turbulent Kinetic Energy Contour of Central Plane

    图  5  不同平面时均流向流速分布

    Figure  5.  Time-averaged Streamwise Velocity Contour of Different Planes

    图  6  不同位置时均湍动能分布

    Figure  6.  Time-averaged Turbulent Kinetic Energy Contour of Different Locations

    图  7  x/(L/2)=0平面采样线布置

    Figure  7.  Arrangement of Sampling Line on x/(L/2)=0 Plane

    图  8  速度分布沿流向变化

    Figure  8.  Velocity Distribution along the Flow Direction

    图  9  z=0.6Dh平面采样线布置

    Figure  9.  Arrangement of Sampling Line on z=0.6Dh Plane

    图  10  速度分布沿展向的变化

    Figure  10.  Velocity Distribution in the Spanwise Direction

    图  11  堵流结构下游湍动能分布规律

    Figure  11.  Turbulent Kinetic Energy Distribution Downstream the Semi-ellipsoid Blockage

    图  12  半椭球底面侧壁温和Nu分布

    Figure  12.  Temperature and Nu Distribution on the Side Wall of Semi-ellipsoid Blockage Bottom

    图  13  半椭球底面侧壁温和Nu沿流向的变化

    Figure  13.  Evolution of Temperature and Nu in the Streamwise Direction on the Side Wall of Semi-ellipsoid Blockage Bottom

    图  14  半椭球顶部侧壁温和Nu分布

    Figure  14.  Temperature and Nu Distribution on the Side Wall of Semi-ellipsoid Blockage Top

    图  15  半椭球顶部侧壁温和Nu沿流向的变化

    Figure  15.  Evolution of Temperature and Nu in the Streamwise Direction on the Side Wall of Semi-ellipsoid Blockage Top

    表  1  15.5 MPa,280℃下水的物性参数

    Table  1.   Physical Properties of Water under 15.5 MPa and 280℃

    密度/
    (kg·m−3)
    定压比热容/
    (kJ·kg−1·K−1)
    动力粘度/
    (Pa·s)
    导热系数/
    (W·m−1·K−1)
    764.28 5.73 9.64×10−5 0.59
    下载: 导出CSV
  • [1] DAVARI A, MIRVAKILI S M, ABEDI E. Three-dimensional analysis of flow blockage accident in Tehran MTR research reactor core using CFD[J]. Progress in Nuclear Energy, 2015, 85: 605-612. doi: 10.1016/j.pnucene.2015.08.008
    [2] XU W, OUYANG K, GUO J Y, et al. Experimental and numerical investigations on heat transfer and flow behavior of flow blockage in narrow rectangular channel with protrusions[J]. Applied Thermal Engineering, 2022, 203: 117954. doi: 10.1016/j.applthermaleng.2021.117954
    [3] 姚维一. 入口边缘堵塞矩形窄缝通道的流场可视化实验研究[D]. 上海: 上海交通大学,2021.
    [4] 袁东东,邓坚,谭思超,等. 矩形通道边缘堵塞和中心堵塞事故实验研究[J]. 核动力工程,2022, 43(6): 66-72.
    [5] GUO Y C, WANG G B, QIAN D Z, et al. Accident safety analysis of flow blockage in an assembly in the JRR-3M research reactor using system code RELAP5 and CFD code FLUENT[J]. Annals of Nuclear Energy, 2018, 122: 125-136. doi: 10.1016/j.anucene.2018.08.031
    [6] GUO Y C, WANG G B, QIAN D Z, et al. Thermal hydraulic analysis of loss of flow accident in the JRR-3M research reactor under the flow blockage transient[J]. Annals of Nuclear Energy, 2018, 118: 147-153. doi: 10.1016/j.anucene.2018.04.014
    [7] SALAMA A, EL-MORSHEDY S E D. CFD analysis of flow blockage in MTR coolant channel under loss-of-flow transient: hot channel scenario[J]. Progress in Nuclear Energy, 2012, 55: 78-92. doi: 10.1016/j.pnucene.2011.11.005
    [8] SALAMA A, EL-AMIN M F, SUN S Y. Three-dimensional, numerical investigation of flow and heat transfer in rectangular channels subject to partial blockage[J]. Heat Transfer Engineering, 2015, 36(2): 152-165. doi: 10.1080/01457632.2014.909191
    [9] SALAMA A, EL-MORSHEDY S E D. CFD simulation of the IAEA 10MW generic MTR reactor under loss of flow transient[J]. Annals of Nuclear Energy, 2011, 38(2-3): 564-577. doi: 10.1016/j.anucene.2010.09.025
    [10] XIA J H, XU W, HE H, et al. Modeling of heat transfer in a narrow rectangular channel with partial swelling blockage[J]. Nuclear Engineering and Design, 2022, 397: 111929. doi: 10.1016/j.nucengdes.2022.111929
    [11] 程瑞琪,熊进标. 板状燃料组件进口堵流事故数值模拟[J]. 核动力工程,2020, 41(S2): 92-97.
    [12] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社,2004: 118.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  38
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-12-19
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回