高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCrAl合金中高温水蒸气氧化增重模型研究

刘臻 张晓红 乔英杰 何琨 杜沛南 张瑞谦 都时禹

刘臻, 张晓红, 乔英杰, 何琨, 杜沛南, 张瑞谦, 都时禹. FeCrAl合金中高温水蒸气氧化增重模型研究[J]. 核动力工程, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139
引用本文: 刘臻, 张晓红, 乔英杰, 何琨, 杜沛南, 张瑞谦, 都时禹. FeCrAl合金中高温水蒸气氧化增重模型研究[J]. 核动力工程, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139
Liu Zhen, Zhang Xiaohong, Qiao Yingjie, He Kun, Du Peinan, Zhang Ruiqian, Du Shiyu. Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature[J]. Nuclear Power Engineering, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139
Citation: Liu Zhen, Zhang Xiaohong, Qiao Yingjie, He Kun, Du Peinan, Zhang Ruiqian, Du Shiyu. Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature[J]. Nuclear Power Engineering, 2024, 45(3): 139-145. doi: 10.13832/j.jnpe.2024.03.0139

FeCrAl合金中高温水蒸气氧化增重模型研究

doi: 10.13832/j.jnpe.2024.03.0139
基金项目: 国家重点研发计划(2019YFB1901003)
详细信息
    作者简介:

    刘 臻(1989—),男,博士后,现主要从事核能材料理论研究工作,E-mail: tcliu1989@163.com

    通讯作者:

    乔英杰,E-mail: qiaoyingjie@hrbeu.edu.cn

  • 中图分类号: TL341

Study on Weight-gain Model of FeCrAl Alloy by Steam Oxidation at Medium and High Temperature

  • 摘要: 通过预测FeCrAl合金在不同温度下的水蒸气氧化行为,从而为反应堆失水事故(LOCA)下的FeCrAl包壳性能演化仿真提供模型。本文基于反应控制与扩散控制的氧化机制,提出了两段式的氧化增重微分模型,并给出了模型参数标定方法。结合实验提供的FeCrAl合金在高温(900~1200℃)与中温(400℃)条件下的水蒸气氧化增重数据,模型能够统一描述400~1200℃温度区间内的FeCrAl合金氧化增重行为,与实验数据的误差控制在20%以内。同时观测到,反应-扩散机制的临界增重在400~900℃时基本不变,在更高温度时显著上升,其原因是高温时氧化层生长过快,难以形成致密的氧化保护层。考虑实际LOCA时初始水腐蚀氧化层的影响以及气压变化,模型给出了相对应的修正方案。本研究有望为FeCrAl合金包壳在LOCA下的失效行为仿真提供氧化增重模型与数据。

     

  • 图  1  FeCrAl合金的水蒸气氧化增重随时间变化曲线与初步拟合结果

    Figure  1.  Curves for Steam Oxidation Weight-gain of FeCrAl Alloy with Time and Preliminary Fitting Results

    图  2  高温水蒸气氧化实验中FeCrAl合金氧化速率随温度变化的Arrhenius公式拟合结果

    Figure  2.  Arrhenius Formula Fitting Results for the Change of Oxidation Rate of FeCrAl Alloy with Temperature in High Temperature Steam Oxidation Experiment

    图  3  FeCrAl合金的指前因子随激活能变化曲线

    Figure  3.  Curve of Pre-exponential Factor of FeCrAl Alloy with Activation Energy

    图  4  补全反应阶段后的氧化增重模型曲线

    Figure  4.  Oxidation Weight-gain Curves with the Supplement Reaction Stage

    图  5  $ W_{\text{I-II}} $随$ {k_{\text{I}}} $变化关系曲线

    Figure  5.  The Relationship between $ W_{\text{I-II}} $ and $ {k_{\text{I}}} $

    图  6  各类合金在高温水蒸气扩散阶段的氧化速率比较[3]

    Figure  6.  Comparison of High Temperature Steam Oxidation Rate at Diffusion Stage for Different Types of Alloys

    表  1  FeCrAl合金水蒸气氧化增重模型参数

    Table  1.   Parameters of FeCrAl Alloy Oxidation Weight Gain Model

    样品 T/℃ $ {Q_{\text{I}}} $/(kJ·mol–1) $ {A_{\text{I}}} $/(mg·cm–2·s–1) $ {Q_{{\text{II}}}} $/(kJ·mol–1) $ A\mathrm{_{II}} $/(mg2·cm–4·s–1) $ W_{\text{I-II}} $/(mg·cm–2)
    S1合金 900 80.4 0.12 89.1 0.016 0.06(0.10)
    1000 0.13
    1100 0.23
    1200 0.40
    400 0.11
    S2合金 400 74.2 0.12 82.2 0.016 0.16
      括号内数据指模型修正后的数据
    下载: 导出CSV
  • [1] ALLEN T, BUSBY J, MEYER M, et al. Materials challenges for nuclear systems[J]. Materials Today, 2010, 13(12): 14-23. doi: 10.1016/S1369-7021(10)70220-0
    [2] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010
    [3] TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1-3): 420-435. doi: 10.1016/j.jnucmat.2013.06.041
    [4] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [5] TERRANI K A. Accident tolerant fuel cladding development: promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30. doi: 10.1016/j.jnucmat.2017.12.043
    [6] WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
    [7] UNOCIC K A, HOELZER D T, PINT B A. Microstructure and environmental resistance of low Cr ODS FeCrAl[J]. Materials at High Temperatures, 2015, 32(1-2): 123-132. doi: 10.1179/0960340914Z.00000000088
    [8] JÖNSSON B, LU Q, CHANDRASEKARAN D, et al. Oxidation and creep limited lifetime of kanthal APMT®, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation of Metals, 2013, 79(1-2): 29-39. doi: 10.1007/s11085-012-9324-4
    [9] PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
    [10] TERENTYEV D, HAFEZ HAGHIGHAT S M, SCHÄUBLIN R. Strengthening due to Cr-rich precipitates in Fe–Cr alloys: effect of temperature and precipitate composition[J]. Journal of Applied Physics, 2010, 107(6): 061806. doi: 10.1063/1.3340522
    [11] FIELD K G, HU X X, LITTRELL K C, et al. Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys[J]. Journal of Nuclear Materials, 2015, 465: 746-755. doi: 10.1016/j.jnucmat.2015.06.023
    [12] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [13] SUN Z Q, BEI H B, YAMAMOTO Y. Microstructural control of FeCrAl alloys using Mo and Nb additions[J]. Materials Characterization, 2017, 132: 126-131. doi: 10.1016/j.matchar.2017.08.008
    [14] SUN Z Q, YAMAMOTO Y. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication[J]. Materials Science and Engineering:A, 2017, 700: 554-561. doi: 10.1016/j.msea.2017.06.036
    [15] BADINI C, LAURELLA F. Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism[J]. Surface and Coatings Technology, 2001, 135(2-3): 291-298. doi: 10.1016/S0257-8972(00)00989-0
    [16] WANG P, QI W, YANG K, et al. Systematic investigation of the oxidation behavior of Fe-Cr-Al cladding alloys in high-temperature steam[J]. Corrosion Science, 2022, 207: 110595. doi: 10.1016/j.corsci.2022.110595
    [17] PINT B A, DRYEPONDT S, UNOCIC K A, et al. Development of ODS FeCrAl for compatibility in fusion and fission energy applications[J]. JOM, 2014, 66(12): 2458-2466. doi: 10.1007/s11837-014-1200-z
    [18] CHENG T, KEISER J R, BRADY M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. Journal of Nuclear Materials, 2012, 427(1-3): 396-400. doi: 10.1016/j.jnucmat.2012.05.007
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  11
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2023-08-18
  • 刊出日期:  2024-06-13

目录

    /

    返回文章
    返回