Performance Design and Experimental Study of Large-load Isolators
-
摘要: 采用碟形弹簧与磁流变液相结合的方式,针对核动力系统重型设备设计了一种大承载隔振器。该隔振器采用磁流变液阻尼器作为主要阻尼部件,采用小刚度和大刚度碟形弹簧复合组件作为主要承载结构。通过对碟形弹簧复合组件进行分析设计,确定复合组件的结构参数,构造隔振器样品。对隔振器样品进行动静刚度和阻尼比性能测试,结果表明该隔振器的额定承载达到11 t,额定承载下固有频率约为6.2 Hz,在主要隔振频率范围内的动刚度和阻尼比性能较为稳定。但动刚度和阻尼比受振动幅度影响较大,当振动幅度由0.05 mm提高至0.2 mm时,动刚度由约100 kN/mm降低至约45 kN/mm,阻尼比由约0.07提高至约0.19。本文研究可为后续工程应用提供技术参考和支撑。Abstract: A large-load isolator is designed for heavy equipment of nuclear power system by combining disc spring with magnetorheological liquid phase. The magnetorheological fluid damper is used as the main damping component, and the composite component of small stiffness and large stiffness disc spring is used as the main bearing structure. Through the analysis and design of the disc spring composite component, the structural parameters of the composite component are determined, and the sample isolator is formed accordingly. The spring rate ratio and damping ratio of the isolator samples were tested. The results show that the rated load of the isolator reaches 11 tons and the natural frequency is about 6.2 Hz. The dynamic stiffness and damping ratio performance of the isolator are relatively stable in the range of main vibration isolation frequencies. However, the dynamic stiffness and damping ratio are greatly affected by the amplitude. When the vibration amplitude increases from 0.05 mm to 0.2 mm, the dynamic stiffness decreases from about 100 kN/mm to about 45 kN/mm, and the damping ratio increases from about 0.07 to about 0.19. The research in this paper can provide technical reference and support for subsequent engineering applications.
-
Key words:
- Isolator /
- Large-load /
- Disc springs /
- Stiffness /
- Damping ratio
-
表 1 隔振器主要特性参数对照表
Table 1. Comparison of Main Characteristic Parameters of Isolator
主要特性 需求值 设计值 额定承载/t ≥10 约11 额定承载下固有频率/Hz <8 约6 额定承载下压缩变形量/mm 约7.5 约7.5 刚度下限/(kN·mm−1) 6 6 安装最大外径/mm ≤350 <350 安装最大高度/mm ≤400 <400 表 2 不同振动幅度下隔振器的动刚度和阻尼比测试结果
Table 2. Test Results of Dynamic Stiffness and Damping Ratio under Different Vibration Amplitudes
振动幅度/mm 0.50 0.25 0.10 0.05 0.02 动刚度/(kN·mm−1) 26 46 69 96 108 阻尼比 0.19 0.18 0.17 0.07 0.06 -
[1] SHIMADA T, SUHARA J, INOUE K. Three dimensional seismic isolation system for next-generation nuclear power plant with rolling seal type air spring and hydraulic rocking suppression system[C]//Proceedings of the ASME 2005 Pressure Vessels and Piping Conference. Denver, Colorado: ASME, 2005. [2] 武锐,高建和,吴焕. 基于有限元的碟簧静刚度研究[J]. 机械工程师,2010(8): 57-59. [3] JIA F, ZHANG F C. Mechanical properties of disc-spring vibration isolators based on boundary friction[J]. Journal of Southeast University:English Edition, 2014, 30(1): 39-44. [4] DING Y K, LIU Y T. Cyclic tests of assembled self-centering buckling-restrained braces with pre-compressed disc springs[J]. Journal of Constructional Steel Research, 2020, 172: 106229. doi: 10.1016/j.jcsr.2020.106229 [5] HADAD A A, SHAHROOZ B M, FORTNEY P J. Innovative resilient steel braced frame with Belleville disk and shape memory alloy assemblies[J]. Engineering Structures, 2021, 237: 112166. doi: 10.1016/j.engstruct.2021.112166 [6] 王维,李爱群,周德恒,等. 新型三维多功能隔振支座设计及其隔振分析[J]. 东南大学学报: 自然科学版,2014, 44(4): 787-792. [7] JIA F, SHA H W, ZHANG F C. Mechanical properties and impact response of disc-spring vibration isolator combined with polyurethane pieces[J]. International Journal of Intelligent Systems Technologies and Applications, 2014, 13(1-2): 117-137. [8] 吴乙万,程湖,白鸿柏,等. 金属橡胶/碟簧叠层复合结构阻尼特性及其非对称迟滞模型参数识别[J]. 振动与冲击,2022, 41(20): 270-276,314. [9] ALMEN J O, LASZLO A. The uniform-section disk spring[J]. Journal of Fluids Engineering, 1936, 58(4): 305-314. [10] 陆文遂. 碟形弹簧的计算、设计与制造[M]. 上海: 复旦大学出版社,1990: 35-53. [11] 张广,汪辉兴,王炅. 磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析[J]. 振动与冲击,2019, 38(20): 172-180,187. [12] SUN S S, TANG X, YANG J, et al. A new generation of magnetorheological vehicle suspension system with tunable stiffness and damping characteristics[J]. IEEE Transactions on Industrial Informatics, 2019, 15(8): 4696-4708. doi: 10.1109/TII.2018.2890290 [13] HUA Y Y, ZHU S Y, SHI X. High-performance semiactive secondary suspension of high-speed trains using negative stiffness and magnetorheological dampers[J]. Vehicle System Dynamics, 2022, 60(7): 2290-2311. doi: 10.1080/00423114.2021.1899251 [14] 李嘉豪,张永浩,杜新新,等. 磁流变液阻尼器分阶段建模与流道参数敏感性分析[J]. 机械工程学报,2022, 58(11): 143-155. [15] 李星照,马伟杰,刘胜,等. 核电厂大承载隔振器性能试验研究[C]. 长沙: 中西部核学会,2023.