Research Analysis and Implementation of Reactor Doubling Period Algorithm in Source Range Measurement
-
摘要: 反应堆倍增周期是反应堆控制中重要的监测参数,直接反映反应堆功率水平变化快慢,用于判定反应堆是否处于安全可控状态。反应堆源量程中子测量以脉冲计数率表征中子注量率与功率水平,对应的反应堆倍增周期计算较为复杂。采用数字化技术提出一种基于最小误差的多点拟合倍增周期数字化实时算法,通过现场可编程门阵列(FPGA)具体实现该算法并开展功能与性能测试。测试结果表明:对于反应堆保护阈值±30 s内的反应堆倍增周期,采用该算法的FPGA能够输出较准确倍增周期计算结果,作为触发安全保护系统的信号。该反应堆倍增周期算法适用于源量程中子测量系统中堆功率变化的实时监测,以保障启堆阶段的安全可控。
-
关键词:
- 源量程中子测量 /
- 反应堆倍增周期 /
- 现场可编程门阵列(FPGA)
Abstract: The reactor period doubling time is an important monitoring parameter in reactor control, as it directly reflects the rate of change of reactor power level. It is used to determine whether the reactor is in a safe and controllable state. Neutron measurement in reactor source range uses pulse counting rate to characterize neutron fluence rate and power level, and the calculation of corresponding reactor doubling period is complicated. A digital real-time algorithm based on multi-point fitting with minimum error is proposed using digitalization techniques. This algorithm is implemented in field programmable gate array (FPGA) hardware, and functional and performance tests are conducted. The test results show that the FPGA using this algorithm can accurately output the calculated reactor period doubling time within the reactor protection threshold of ±30s, as the triggering signals for the safety protection system. This reactor period doubling time algorithm is suitable for real-time monitoring of power changes in the source range neutron measurement system, ensuring safety and controllability during startup phase. -
表 1 倍增周期算法资源占比
Table 1. Proportion of Resources of Doubling Time Algorithm
类型 数目 算法资源占比/% FPGA总资源 算法所占资源 Slice LUTS 20800 4731 22.75 Slice Registers 41600 1309 3.15 Slice 8150 1414 17.35 DSPs 90 26 28.89 表 2 各脉冲计数率段统计时长较优值
Table 2. Optimal Value of Statistical Duration of Each Pulse Counting Rate Range
脉冲计数率Nm/s−1 <10 10~102 102~104 >104 脉冲统计时长∆t/s 35 5 1 0.1 -
[1] LESCOP B, PASDELOUP P, FALAISE J, et al. Marine: a fast fully digitalized wide range neutron monitor system[C]//2000 IEEE Nuclear Science Symposium. Conference Record. Lyon, France: IEEE, 2000. [2] 胡守印. 反应堆周期监测装置的研制[J]. 工业仪表与自动化装置,2000(4): 47-48,6. doi: 10.3969/j.issn.1000-0682.2000.04.015 [3] 熊华胜,李铎,张良驹,等. 数字化核测量系统反应堆倍周期计算的敏感性分析[J]. 原子能科学技术,2012, 46(S1): 417-420. [4] 李彪,张杰. 反应堆堆外核测系统探测器选型分析[J]. 核电子学与探测技术,2016, 36(2): 232-236. [5] 付学峰. 反应堆周期算法及定值优化研究[J]. 原子能科学技术,2013, 47(S2): 668-672. [6] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. [7] 熊华胜,李铎. 基于Unscented卡尔曼滤波器的反应堆周期计算算法研究[J]. 原子能科学技术,2014, 48(S1): 568-571. [8] JULIER S, UHLMANN J, DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482. [9] 舒毅,汤仲鸣,胡铸萱. CAP系列核电站堆内外核测系统国产化探讨[J]. 自动化仪表,2018, 39(11): 17-20,26. [10] 杜颖. 核电厂核探测技术的应用[J]. 核安全,2018, 17(5): 47-52. [11] 花锋,杜俊涛,郑勋涛,等. 核电厂堆用核仪器技术现状与发展趋势[J]. 核电子学与探测技术,2019, 39(4): 517-522. [12] ZHANG Z Y, DONG Y J, LI F, et al. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) demonstration power plant: an engineering and technological innovation[J]. Engineering, 2016, 2(1): 112-118.