Study on Fluid-Thermal-Solid Coupling of Damper of Sodium to Air Heat Exchanger in Sodium-Cooled Fast Reactor
-
摘要: 针对核电钠冷快堆钠-空气热交换器风阀在高温工作环境下存在的叶片卡涩现象和阀体强度失效问题,设计了一种双叶片钠冷快堆钠-空气热交换器风阀。利用流热固耦合方法对该风阀在不同开度下的流场流动特性、阀体温度分布、阀体变形及应力情况进行了研究。结果表明:①风阀在开度45°以下时,流体通过风阀前后会产生明显的速度梯度和压力梯度;②局部温差越大的区域热应力值越大,最大应力为206.94 MPa,出现在框架侧密封板边缘处,最大应力值符合材料强度要求;③阀体变形及应力主要为受热引起的热变形和热应力,风阀最大变形量为3.3368 mm且框架变形量在各个方向均大于叶片变形量,新设计的风阀不会产生叶片卡涩现象。Abstract: Aiming at the problems of blade sticking and damper body strength failure of sodium to air heat exchanger in nuclear power sodium-cooled fast reactor under high temperature working environment, a double-blade damper for sodium to air heat exchanger of sodium-cooled fast reactor was designed. The characteristics of flow field, temperature distribution of damper body, deformation and stress of damper body with different opening degrees were studied using fluid-thermal-solid coupling method. The results show that when the opening of damper is below 45 degrees, the fluid will have obvious velocity gradient and pressure gradient before and after it passes through damper. The greater the local temperature difference, the greater the thermal stress value, and the maximum stress is 206.94 MPa, which appears at the edge of the frame side sealing plate, and the maximum stress value meets the material strength requirements. The deformation and stress of damper body are mainly thermal deformation and thermal stress caused by heating. The maximum deformation of damper is 3.3368 mm, and the deformation of the frame is greater than that of the blade in all directions. The newly designed damper has no phenomenon of blade sticking.
-
Key words:
- Sodium to air heat exchanger /
- Damper /
- Fluid-thermal-solid coupling /
- Thermal stress
-
表 1 风阀模型网格数量
Table 1. Number of Grids of Damper Model
风阀开度 流场模型第1层
网格高度/mm固体网格数量 流体网格数量 总网格数量 15° 4 1834809 7369473 9204282 30° 5 1835944 7360236 9196180 45° 6 1835565 7321689 9157254 60° 7 1835488 7207113 9042601 75° 8 1832854 7154602 8987456 90° 9 1831342 7079716 8911058 表 2 316H不锈钢主要物性参数
Table 2. Main Physical Parameters of 316H Stainless Steel
参数名 参数值 密度/(kg·m−3) 7750 抗拉强度(${\sigma _{\text{b}}} $)/MPa 515 条件屈服强度/MPa 205 热导率/(W·m−1·K−1) 15.1 线性膨胀系数/(10−6 K−1) 17.0 弹性模量/(kN·mm−2) 193 泊松比 0.3 -
[1] VINOD V, KRISHNAKUMAR S, PUNNIYAMOORTHY R, et al. Experimental evaluation of safety grade decay heat removal in prototype fast breeder reactor[J]. Nuclear Engineering and Design, 2013, 265: 1057-1065. doi: 10.1016/j.nucengdes.2013.08.072 [2] 余航,赵新文,傅晟威. 船用核动力装置止回阀的流固热耦合研究[J]. 核动力工程,2019, 40(4): 25-28. [3] LI W Q, ZHAO L, YUE Y, et al. Thermo-mechanical stress analysis of feed-water valves in nuclear power plants[J]. Nuclear Engineering and Technology, 2022, 54(3): 849-859. doi: 10.1016/j.net.2021.09.018 [4] 马天伟. 具有加热带的蝶阀热流固耦合及结构的有限元分析[D]. 沈阳: 东北大学,2018. [5] VINOD V, PATHAK S P, PAUNIKAR V D, et al. Experimental evaluation of sodium to air heat exchanger performance[J]. Annals of Nuclear Energy, 2013, 58: 6-11. doi: 10.1016/j.anucene.2013.01.063 [6] VINOD V, SATHISHKUMAR S, MOURYA R K, et al. Performance evaluation of decay heat removal system of PFBR with partial availability of air side dampers[J]. Nuclear Engineering and Design, 2017, 318: 174-181. doi: 10.1016/j.nucengdes.2017.04.021 [7] 沈伟,张强升,王志强,等. 核电风阀密封的设计和试验研究[J]. 核动力工程,2016, 37(3): 103-105. [8] 沈聪,刘茂龙,刘利民,等. 铅铋螺旋管壳侧流动传热数值模拟研究[J]. 核动力工程,2022, 43(S2): 13-18.