Research on Flow Induced Vibration Characteristics of Plate Fuel Assembly in High-Flow Lead-bismuth Environment
-
摘要: 液态铅铋合金具有导热性能好、热容量高等特点,是新一代先进反应堆的理想冷却剂。本文建立了高流速铅铋环境下板型燃料组件全尺寸计算流体动力学(CFD)模型,基于大涡模拟湍流模型开展了瞬态流体力学分析并获得了燃料板所受的流体激励力。建立燃料板CFD模型,基于瞬态流体激励数据开展基于时域的结构动力学计算并获得燃料板的位移响应。计算结果显示,由于吊装结构形成的漩涡脱落,中间位置燃料板所受流体激励力远大于两侧位置燃料板。燃料板位移响应集中于自身的一阶频率,并且单组燃料板的一阶频率远大于湍流激励主频,因此燃料板没有在流体激励下共振的风险。考虑到入口湍流强度影响,基于矩形流道功率密度谱的流致振动分析方法保守性能不足。本研究可为新一代高性能燃料组件研发提供参考。Abstract: Liquid lead-bismuth alloy has the characteristics of good thermal conductivity and high heat capacity, making it an ideal coolant for the new generation of advanced reactor. In this article, a full-scale computational fluid dynamics (CFD) model for plate fuel assembly in high-flow lead-bismuth environment was established, the transient fluid dynamics analysis based on large eddy simulation (LES) turbulence model was carried out and the fluid excitation force on the fuel plate was obtained. The dynamic analysis model of fuel plate was established, the structural dynamics calculation based on time domain was carried out according to the transient fluid excitation data, and the displacement response of fuel plate was obtained. The calculation results show that the fluid excitation force on the fuel plate in the middle position is much greater than that on the two sides because of the vortex shedding formed by the hoisting structure. The displacement response of the fuel plate concentrates on its own first-order frequency, and the first-order frequency of single fuel plate is much greater than the main frequency of turbulent excitation, so there is no risk of resonance of the fuel plate under fluid excitation. Considering the influence of inlet turbulence intensity, the conservatism of the flow induced vibration analysis method based on rectangular channel power density spectrum may be insufficient. This research can provide a reference for the development of new generation high-performance fuel assemblies.
-
Key words:
- Large eddy simulation /
- Flow induced vibration /
- Liquid lead-bismuth alloy
-
表 1 板型燃料组件流场主要参数
Table 1. Main Parameters of Flow Field in Plate Fuel Assembly
参数 数值及描述 反应堆冷却剂 Pb-55.5%Bi 冷却剂流动方向 自上而下 活性段冷却剂入口流速/(m·s−1) 4 表 2 燃料板前10阶模态频率
Table 2. The First 10th Modal Frequencies of Fuel Plate
阶数 频率/Hz 1 84.971 2 85.242 3 86.469 4 88.532 5 91.561 6 95.679 7 101.02 8 107.72 9 115.90 10 125.67 表 3 燃料板最大位移响应
Table 3. Maximum Displacement Response of Fuel Plate
燃料板 最大位移均方根值/μm 最大位移幅值/μm 1 13.03 47.97 2 18.96 61.57 3 31.76 115.05 -
[1] MILLER D R. Critical flow velocities for collapse of reactor parallel-plate fuel assemblies[J]. Journal of Engineering for Power, 1960, 82(2): 83-91. doi: 10.1115/1.3672746 [2] JOHANSSON R B. Hydraulic instability of reactor parallel plate fuel assemblies: KAPL-M-EJ-9[R]. Niskayuna, NY , United States: Knolls Atomic Power Lab., 1959. [3] 董宇. 叠层板状结构流致振动响应及稳定性研究[D]. 成都: 西南交通大学,2015. [4] 刘丽芳. 矩形通道中柔性平板的窄频大幅振动特性研究[D]. 北京: 华北电力大学(北京),2011. [5] 闵刚,薄涵亮,姜胜耀,等. 板状燃料组件流致振动实验研究[J]. 清华大学学报: 自然科学版,2004, 44(3): 350-353. [6] 闵刚,薄涵亮,姜胜耀,等. 板型燃料组件额定流速流致振动实验研究[J]. 核科学与工程,2004, 24(2): 121-124. doi: 10.3321/j.issn:0258-0918.2004.02.005 [7] SHAMS A, ROELOFS F, BAGLIETTO E, et al. High fidelity numerical simulations of an infinite wire-wrapped fuel assembly[J]. Nuclear Engineering and Design, 2018, 335: 441-459. doi: 10.1016/j.nucengdes.2018.06.012 [8] 邹文重,周涛,苏子威,等. 注气对铅铋流动换热参数影响的数值研究[J]. 核聚变与等离子体物理,2013, 33(2): 187-192. doi: 10.3969/j.issn.0254-6086.2013.02.015 [9] 邹文重. 不同介质对流动不稳定性影响的研究[D]. 北京: 华北电力大学,2014. [10] YANG Y R, ZHANG J Y. Frequency analysis of a parallel flat plate-type structure in still water, PART II: a complex structure[J]. Journal of Sound and Vibration, 1997, 203(5): 805-814. doi: 10.1006/jsvi.1996.0915