Study on Neutron Sensitivity Calculation Model of Ex-core Neutron Detector
-
摘要: 本研究以蒙特卡罗方法为基础,提出了一种中子灵敏度计算模型,用于堆外核探测器核性能设计研究。首先,基于探测器物理原理,得到中子灵敏度的影响因素;在此基础上,分析探测器孔道处中子场特性,提出中子灵敏度计算模型;对计算模型进行讨论得到其不确定度分析。最后对模型展开验证,结果表明计算得到的中子灵敏度与实测数据的误差在可接受范围内,验证了模型的可行性。Abstract: Based on the Monte Carlo method, this thesis proposes a neutron sensitivity calculation model for the design and study of the performance of ex-core neutron detectors. Firstly, based on the physical principle of the detector, the influencing factors of neutron sensitivity are obtained. On this basis, the neutron field characteristics at the monitor holes are analyzed, and the neutron sensitivity calculation model is proposed. The calculation model is discussed to obtain the uncertainty analysis of the model. Finally, the model is verified, and the error between the calculated neutron sensitivity and the measured data is within the acceptable range, which verifies the feasibility of the model.
-
表 1 涂硼正比计数管相关参数
Table 1. Boron-Coated Proportional Counter Tube Related Parameters
组成部分 物理参数 数值 外筒 直径/mm 80 长度/mm 1400 壁厚/mm 1.5 材料及密度 TA2,4.51 g/cm3 电压/V 0 阴极管 直径/mm 70 长度/mm 1150 壁厚/mm 1.5 材料及密度 TA2,4.51 g/cm3 电压/V 0 阳极丝 直径/μm 30 长度/mm 1150 材料 镀金钨丝 内侧材料 钨丝(半径7.5 μm) 外侧材料 金(内径7.5 μm、外径15 μm) 电压/V 1100 涂硼参数 位置 阴极内侧 材料 90%10B+10%11B 厚度/μm 3.4 工作气体 组分与气压 23.5 kPa Ar + 4 kPa CO2 表 2 模型计算结果与实测数据
Table 2. Model Calculation Results and Measured Data
探测器种类 计算结果 实测数据 模型的中子
灵敏度误差/%模型相对不确定度/% 涂硼正比计数管 48.08±10.69 cm2 43.63±2.44 cm2 10.20 24.50 裂变电离室 1.07±0.24 cm2 0.92±0.07 cm2 16.30 26.09 补偿型涂硼电离室 (1.37±0.30)×10−13 A·cm2·s (1.50±0.08)×10−13 A·cm2·s 8.67 20.00 -
[1] 廖俊辉,谢一冈,陈元柏,等. 用于热中子探测的正比管性能研究[J]. 核电子学与探测技术,2007, 27(2): 367-371. doi: 10.3969/j.issn.0258-0934.2007.02.057. [2] 陈国云,魏志勇,辛勇,等. 涂硼电离室中子探测效率和灵敏度[J]. 原子能科学技术,2011, 45(2): 244-249. [3] 赵江滨,何高魁,刘洋,等. 裂变电离室中子探测效率与灵敏度MC模拟[J]. 核电子学与探测技术,2022, 42(1): 89-93. [4] 周治江,武文超,章航洲,等. 涂硼电离室中子灵敏度计算与验证[J]. 仪器仪表用户,2020, 27(12): 75-78. doi: 10.3969/j.issn.1671-1041.2020.12.019. [5] 吴雄,蔡利,蒋洁琼,等. MC方法计算自给能铑中子探测器灵敏度[J]. 核电子学与探测技术,2022, 42(4): 634-639. [6] 吴雄,蔡利,张香菊,等. 核反应堆瞬发型自给能中子探测器初始灵敏度研究[J]. 科技导报,2022, 40(24): 64-71. [7] 于稼驷. β衰变型自给能堆芯中子探测器灵敏度数学模型[J]. 核安全,2023, 22(4): 94-106. [8] 马彦良,欧阳晓平,王群书,等. 裂变靶探测系统中子灵敏度的理论计算[J]. 核技术,2009, 32(6): 473-476. [9] 方美华,魏志勇,张紫霞,等. 涂硼正比计数管中热中子响应函数理论计算及模拟验证[J]. 南京航空航天大学学报,2012, 44(1): 81-86. doi: 10.16356/j.1005-2615.2012.01.023. [10] HANSON A O, MCKIBBEN J L. A neutron detector having uniform sensitivity from 10 KeV to 3 MeV[J]. Physical Review, 1947, 72(8): 673-677. doi: 10.1103/physrev.72.673 [11] GOLDSTEIN N P. A Monte-Carlo calculation of the neutron sensitivity of self-powered detectors[J]. IEEE Transactions on Nuclear Science, 1973, 20(1): 549-556. doi: 10.1109/TNS.1973.4326961 [12] FLAMMANG R W, SEIDEL J G, RUDDY F H. Fast neutron detection with silicon carbide semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579(1): 177-179. [13] RAO P S, MISRA S C. Neutron sensitivity of vanadium self powered neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 253(1): 57-60. [14] 汲长松. 核辐射探测器及其实验技术手册[M]. 北京: 原子能出版社,1990: 4. [15] 陈伯显,张智. 核辐射物理及探测学[M]. 哈尔滨: 哈尔滨工程大学出版社,2011: 448.