Research on Industrial Validation of VVER-1000 Based on PWR Core Physics Analysis Code Bamboo-C
-
摘要: 本研究旨在实现对VVER-1000型核反应堆的精确物理分析,基于西安交通大学自研的先进压水堆堆芯物理分析软件Bamboo-C,进行了深入的方法学研究。研究内容包括:在组件计算方面,研究了基于构造实体几何的六角形输运计算方法及重反射层的精细建模技术;在堆芯计算方面,研究了保角变换与非线性迭代策略结合的六角形节块中子扩散计算法。基于Bamboo-C软件对某VVER-1000机组连续3个燃料循环启动物理试验和功率运行进行了建模计算,并与实测数据进行了对比分析。结果表明:①启动物理试验中,临界硼浓度的误差均值为−5.0ppm(1ppm=10–6);慢化剂温度系数与等温温度系数的误差均值分别为0.3 pcm/K和0.9 pcm/K(1pcm=10−5);硼微分价值的误差均值为−5.0%;控制棒价值的误差均值为−7.8%;②功率运行中,3个循环临界硼浓度的误差均值分别为−2.3ppm、−18.9ppm和−7.8ppm;3个循环的堆芯功率分布误差的均值为−0.010(组件相对功率大于1)和0.012(组件相对功率小于1)。因此,Bamboo-C软件对VVER-1000机组堆芯关键物理量的计算误差均满足工业限值要求,具备工程应用的能力。
-
关键词:
- Bamboo-C软件 /
- VVER-1000 /
- 工业确认
Abstract: This study aims to achieve precise physical analysis of VVER-1000 nuclear reactors. Based on Bamboo-C, an advanced PWR core physical analysis software developed by Xi'an Jiaotong University, a thorough methodological study is carried out. The research encompasses: in the aspect of assembly calculation, methods based on Constructive Solid Geometry (CSG) for hexagonal transport calculations and detailed modeling techniques for heavy reflector layers were studied; in core calculation, a method combining conformal mapping and nonlinear iterative strategies for hexagonal fuel assembly neutron diffusion was investigated. Using Bamboo-C, modeling calculations were performed for three consecutive fuel cycles of start-up physical experiments and power operations of a specific VVER-1000 unit, followed by a comparative analysis with actual measured data. The results indicate: ①In the start-up physical tests, the average error of critical boron concentration is −5.0ppm (1ppm=10–6); the average errors of the moderator temperature coefficient and the isothermal temperature coefficient are 0.3 pcm/K and 0.9 pcm/K(1pcm=10–5), respectively; the average error of the boron worth is −5.0%; and the average error in control rod worth is −7.8%. ②During power operations, the average errors of critical boron concentration for three cycles were −2.3ppm, −18.9ppm, and −7.8ppm, respectively; the average errors in the core power distribution for the three cycles were −0.010 (for assembly relative power greater than 1) and 0.012 (for assembly power less than 1). Therefore, Bamboo-C software meets the industrial threshold requirements for calculation errors of key physical quantities in the VVER-1000 reactor core, demonstrating its capability for engineering application.-
Key words:
- Bamboo-C code /
- VVER-1000 /
- Industrial validation
-
表 1 某VVER-1000机组C01启动物理试验结果
Table 1. Results of Start-up Physics Test for C01 of VVER-1000
试验内容 误差 验收准则 CBC 8.14ppm ±106ppm MTC −0.425 pcm/K ±5 pcm/K −0.531 pcm/K DBC 0.25% ±25% −2.45% −10.19% −7.68% 控制棒价值 H8 −0.43% ±20% H9 −9.91% H10 −16.96% H8、H9、H10叠步 −10.92% 表 2 某VVER-1000机组C02启动物理试验结果
Table 2. Results of Start-up Physics Test for C02 of VVER-1000
试验内容 误差 验收准则 CBC −30.92ppm ±106ppm MTC 1.082 pcm/K ±5 pcm/K ITC 0.894 pcm/K 控制棒价值 H1 −5.75% ±20% H2 −3.52% H3 −8.70% H4 −7.54% H5 −11.90% H6 −5.89% H7 −7.58% H8 −11.11% H9 −2.97% H10 −10.41% 表 3 某VVER-1000机组C03启动物理试验结果
Table 3. Results of Start-up Physics Test for C03 of VVER-1000
试验内容 误差 验收准则 CBC 7.72ppm ±106ppm MTC 1.029 pcm/K ±5 pcm/K ITC 0.811 pcm/K 控制棒价值 H1 −7.84% ±20% H2 −8.89% H3 −8.17% H4 −7.00% H5 −9.09% H6 −4.39% H7 −10.19% H8 −7.96% H9 −6.84% H10 −7.04% -
[1] 万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22. [2] ZU T J, XU J L, TANG Y Q, et al. NECP-Atlas: a new nuclear data processing code[J]. Annals of Nuclear Energy, 2019, 123: 153-161. doi: 10.1016/j.anucene.2018.09.016 [3] LIU Z Y, HE Q M, ZU T J, et al. The pseudo-resonant-nuclide subgroup method based global-local self-shielding calculation scheme[J]. Journal of Nuclear Science and Technology, 2018, 55(2): 217-228. doi: 10.1080/00223131.2017.1394232 [4] PUSA M, LEPPÄNEN J. Computing the matrix exponential in Burnup calculations[J]. Nuclear Science and Engineering, 2010, 164(2): 140-150. doi: 10.13182/NSE09-14 [5] 田超. 压水堆组件参数计算方法研究与NECP-CACTI程序开发[D]. 西安: 西安交通大学,2016. [6] SMITH K S. Spatial homogenization methods for light water reactor analysis[D]. Cambridge: Massachusetts Institute of Technology, 1980. [7] ZHANG C, WAN C H, CAO L Z, et al. Method research and engineering validation of the improved homogenization for the heavy reflector in VVER[J]. Annals of Nuclear Energy, 2022, 173: 109119. doi: 10.1016/j.anucene.2022.109119 [8] CHAO Y A, TSOULFANIDIS N. Conformal mapping and hexagonal nodal methods–I: mathematical foundation[J]. Nuclear Science and Engineering, 1995, 121(2): 202-209. doi: 10.13182/NSE95-A28558 [9] BILODID Y, FRIDMAN E, LÖTSCH T. X2 VVER-1000 benchmark revision: fresh HZP core state and the reference Monte Carlo solution[J]. Annals of Nuclear Energy, 2020, 144: 107558. doi: 10.1016/j.anucene.2020.107558