Verification of PCM Nuclear Design Code for Whole Core Calculations
-
摘要: PCM软件包是中广核研究院有限公司自主研发的核设计软件包,包含组件截面计算软件PINE和三维堆芯核设计软件COCO。为了验证PCM软件包的全堆芯计算能力及其准确性,本文基于自制全堆芯例题以及国际通用的BIBLIS、IAEA、LRA等全堆芯基准题对PCM软件包“组件-堆芯”两步法和COCO软件的堆芯计算功能进行了验证。在轻水堆堆芯基准题的计算中,所有算例的有效增殖系数keff平均偏差为6.4pcm(1pcm=10−5),最大偏差仅为28.2pcm,且所有算例中堆芯燃料组件归一化功率分布偏差的绝对值不超过1%。验证结果表明PCM软件包的全堆芯计算功能有较高计算精度,整体计算精度能够满足工程需求。Abstract: PCM software package, independently developed by China Nuclear Power Technology Research Institute Co. Ltd., is a nuclear design code consisting of assembly section calculation code PINE and 3D core design code COCO. To validate the whole core calculation capability and accuracy of the PCM nuclear design code, this study conducted verification using internationally recognized benchmark problems such as BIBLIS, IAEA, and LRA, as well as a self-made whole-core problem for the COCO code and the “assembly-core” two-step method within the PCM nuclear design code. The verification results indicated that in the calculations of the light-water reactor core benchmark problems, the average error of the effective multiplication factor (keff) for all cases was 6.4pcm, with a maximum error of only 28.2pcm. In all the cases, the deviation of the normalized power distribution of the core fuel assemblies did not exceed 1%. The verification results show that the whole core calculation function of the PCM nuclear design code exhibits high computational accuracy, and the overall calculation accuracy can meet the engineering requirements.
-
Key words:
- Core nuclear design /
- Core benchmark /
- PCM software package
-
表 1 二维BIBLIS基准题国内外软件计算结果对比
Table 1. Comparison of Domestic and International Software for 2D BIBLIS Benchmark Problems
软件 keff Δkeff/pcm ∣Emax∣/% 文献[8]参考值 1.025110 0 0 SKETCH-N(P) 1.025210 9.8 1.20 SKETCH-N(S) 1.025260 14.6 1.80 SKETCH-N(A) 1.025320 20.5 2.20 QUANDRY 1.025300 18.5 1.91 NEMD 1.025300 18.5 2.00 NODAN 1.025310 19.5 2.10 NLNEM 1.025220 10.7 1.23 NGFM 1.025260 14.6 1.69 NLSANM 1.025260 14.6 1.85 COCO 1.025108 −0.2 0.19 表 2 二维IAEA基准题国内外软件对比
Table 2. Comparison of Domestic and International Software for 2D IAEA Benchmark Problems
软件 keff Δkeff/pcm ∣Emax∣/% 文献[8]参考值 1.029585 0 0 SKETCH-N(P) 1.029500 −8.3 1.80 SKETCH-N(S) 1.029560 −2.4 0.50 SKETCH-N(A) 1.029620 3.4 1.10 QUANDRY 1.029620 3.4 0.94 NEMD 1.029610 2.4 0.88 NODAN 1.029660 7.3 0.90 TRAC/NEM 1.029500 −8.3 2.05 NLNEM 1.029570 −1.5 1.80 NGFM 1.029600 1.5 0.72 NLSANM 1.029620 3.4 0.59 COCO 1.029610 2.4 0.32 表 3 三维IAEA基准题国内外软件对比
Table 3. Comparison of Domestic and International Software for 3D IAEA Benchmark Problems
软件 keff Δkeff/pcm ∣Emax∣/% 文献[8]参考值 1.029030 0 0 SKETCH-N(P) 1.028990 −3.9 1.80 SKETCH-N(S) 1.029050 1.9 0.40 SKETCH-N(A) 1.029120 8.7 1.10 QUANDRY 1.029020 −1.0 0.69 NEMD 1.029150 11.7 1.60 NODAN 1.029160 12.6 1.70 TRAC/NEM 1.029000 −2.9 1.62 NLNEM 1.029070 3.9 1.29 NGFM 1.029090 5.8 0.67 NLSANM 1.029120 8.7 0.89 COCO 1.029092 6.0 0.70 表 4 二维LRA基准题国内外软件对比
Table 4. Comparison of Domestic and International Software for 2D LRA Benchmark Problems
软件 keff Δkeff/pcm ∣Emax∣/% 文献[8]参考值 0.996368 0 0 SKETCH-N(P) 0.996260 −10.8 1.90 SKETCH-N(S) 0.996350 −1.8 0.50 SKETCH-N(A) 0.996410 4.2 0.20 QUANDRY 0.996410 4.2 0.19 NEMD 0.996390 2.2 0.31 NODAN 0.996410 4.2 0.21 TRAC/NEM 0.996290 −7.8 2.78 NLNEM 0.996260 −10.8 1.85 NGFM 0.996350 −1.8 0.54 NLSANM 0.996350 −1.8 0.54 COCO 0.996375 0.7 0.23 表 5 三维LRA基准题国内外软件对比
Table 5. Comparison of Domestic and International Software for 3D LRA Benchmark Problems
软件 keff Δkeff/pcm ∣Emax∣/% 文献[8]参考值 1.015490 0 0 QUANDRY 1.015590 9.8 0.19 TRAC/NEM 1.015200 28.6 2.78 NLSANM 1.015460 −3.0 0.54 COCO 1.015496 0.6 0.09 表 6 自制堆芯算例反射层参数
Table 6. Self-made Core Benchmark Reactor Reflector Parameters
材料 能群 扩散系数Dg/cm 宏观吸收截面Σag/cm−1 中子产生截面νΣfg/cm−1 转移截面Σs,1-2/cm−1 反射层 1 1.068550 0.003465 0 0.020244 2 0.278094 0.062163 0 -
[1] 王丛林,柴晓明,杨博,等. 先进核能技术发展及展望[J]. 核动力工程,2023, 44(5): 1-5. [2] 张伟斌,朱成林,王幸,等. COSINE软件包基于三代非能动压水堆低功率物理试验的确认与评估[J]. 核动力工程,2021, 42(1): 61-64. [3] 王习宁,刘宙宇,周欣宇,等. 压水堆高保真换料循环计算功能开发与验证应用[J]. 核动力工程,2023, 44(2): 30-36. [4] 厉井钢,王超,陈俊,等. PCM软件包燃料组件弯曲模型的开发及验证[J]. 强激光与粒子束,2022, 34(2): 026004. [5] 陆高奇,丁铭,王超,等. PCM核设计软件包PINE软件的验证与分析[C]//第十九届反应堆数值计算与粒子输运学术会议,上海,2023. [6] 卢皓亮,陈俊,王军令,等. 自主化堆芯核设计软件COCO验证与确认[J]. 原子能科学技术,2017, 51(8): 1459-1463. [7] 卢皓亮,莫锟,李文淮,等. 自主化堆芯三维核设计软件COCO研发[J]. 原子能科学技术,2013, 47(S1): 327-330. [8] 廖承奎. 三维节块中子动力学方程组的数值解法及物理与热工-水力耦合瞬态过程的数值计算的研究[D]. 西安: 西安交通大学,2002. [9] 刘礼勋,张汉,邬颖杰,等. 流水线并行JFNK方法及在中子k本征值问题中的应用[J]. 核动力工程,2023, 44(5): 15-22. [10] GODFREY A T. VERA core physics benchmark progression problem specifications (Revision 4): CASL-U-2012-0131-004[R].USA: Consortium for Advanced Simulation of LWRs, 2014. [11] TRAN V P, NGUYEN K C, HARTANTO D, et al. Development of a PARCS/Serpent model for neutronics analysis of the Dalat nuclear research reactor[J]. Nuclear Science and Techniques, 2021, 32(2): 15. doi: 10.1007/s41365-021-00855-5