Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel
-
摘要: 针对氦氙冷却高温气冷堆堆芯设计和分析需求,本研究建立了一套涵盖物性模型、湍流模型与湍流普朗特数模型的氦氙混合气体三维流动传热模型,并基于此模型开展了棒束通道内氦氙混合气体流动传热数值分析,研究几何参数和运行参数对相关特性的影响规律。结果表明:包壳存在会对紧密栅棒束通道内流动传热带来较大的周向非均匀性,在子通道模拟及整体三维数值模拟中均应考虑包壳导热影响;除包壳外,紧密栅棒束通道内氦氙流动传热则主要受栅径比影响,同一工况下栅径比越大,混合气体对流换热越强烈。Abstract: In response to the design and analysis requirements for the core of the helium-xenon cooled high temperature gas cooled reactor, this study has established a comprehensive three-dimensional heat transfer model for helium-xenon mixture. This model encompasses property model, turbulent model, and turbulent Pr model. Utilizing this model as a foundation, numerical analysis of the flow and heat transfer characteristics of helium-xenon mixture in the fuel rod bundle channel has been conducted. This research investigates the influence of geometric parameters and operational parameters on relevant characteristics. The results reveal that the presence of cladding will bring significant circumferential non-uniformity to the flow and heat transfer in the tight lattice rod bundle channel, necessitating consideration of cladding in both subchannel and three-dimensional numerical simulation. In addition to cladding, heat transfer in the tight lattice rod bundle channel is primarily influenced by the rod diameter ratio. Under identical simulation conditions, a larger rod diameter ratio leads to enhanced convective heat transfer of the mixed gas.
-
表 1 现有低Pr流体Prt模型
Table 1. Existing Prt Models of Fluids with Low Pr
模型 关系式 默认 Prt=0.85 Kays[9] $ {Pr _{\text{t}}} = 1\bigg/\left\{ {\dfrac{1}{{2{{Pr }_{{\text{t,}}\infty }}}} + CP{e_t}\sqrt {\dfrac{1}{{{{Pr }_{{\text{t,}}\infty }}}}} - {{\left( {CP{e_{\text{t}}}} \right)}^2} \times \left[ {1 - {\text{exp}}\left( {\dfrac{{ - 1}}{{CP{e_{\text{t}}}\sqrt {{{Pr }_{{\text{t,}}\infty }}} }}} \right)} \right]} \right\}, {Pr _{{\text{t,}}\infty }} = 0.85 $ Weigand[10] $ \begin{gathered}Pr_{\text{t}}=1\bigg/\left\{\dfrac{1}{2Pr_{\text{t,}\infty}}+CPe_{\mathrm{t}}\sqrt{\dfrac{1}{Pr_{\text{t},\infty}}}-\left(CPe_{\text{t}}\right)^2\times\left[1-\text{exp}\left(\dfrac{-1}{CPe_{\text{t}}\sqrt{Pr_{\text{t,}\infty}}}\right)\right]\right\} \\ Pr_{{\mathrm{t}},\infty}=0.85+\dfrac{100}{Pr\cdot Re^{0.888}} \\ \end{gathered} $ Zhou[7] $ \begin{gathered}Pr\mathrm{_t}=1\bigg/\left\{\dfrac{1}{2Pr_{\text{t,}\infty}}+CPe_{\mathrm{t}}\sqrt{\dfrac{1}{Pr_{\text{t},\infty}}}-\left(CPe_{\text{t}}\right)^2\times\left[1-\text{exp}\left(\dfrac{-1}{CPe_{\text{t}}\sqrt{Pr_{\text{t},\infty}}}\right)\right]\right\} \\ Pr_{\text{t,}\infty}=Pr_{\text{t,local}}=0.80+\dfrac{30}{Pr\cdot Re_{\text{local}}^{0.888}},Re_{\text{local}}=\dfrac{\rho_{\text{local}}u_{\text{local}}D}{\mu_{\text{local}}} \\ \end{gathered} $ 注:Pe—贝克莱数;Re—雷诺数;C—第三维里系数;ρ—密度;u—轴向流速;D—水力直径;μ—粘性系数;下标t表示湍流参数,∞表示湍流核心区参数,local表示局部参数 表 2 实验工况
Table 2. Experimental Conditions
工况编号 热流密度/(W·m−2) 质量流速/(kg·m−2·s−1) 入口温度/K 出口压力/Pa 摩尔质量M/(g·mol−1) Pr Re Run689 96326 357.1 295.5 480141 83.8 0.25 61987 Run696 136770 156.4 297.9 563474 39.5 0.21 27897 -
[1] 张泽,薛翔,王园丁,等. 空间核动力推进技术研究展望[J]. 火箭推进,2021, 47(5): 1-13. [2] TOURNIER J M P, EL-GENK M S. Properties of noble gases and binary mixtures for closed Brayton Cycle applications[J]. Energy Conversion and Management, 2008, 49(3): 469-492. doi: 10.1016/j.enconman.2007.06.050 [3] 王志伟. 基于空间核电源系统的氦氙混合工质布雷顿循环特性研究[D]. 哈尔滨: 哈尔滨工业大学,2021. [4] TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit. San Diego: American Institute of Aeronautics and Astronautics, 2006. [5] KESTIN J, KHALIFA H E, WAKEHAM W A. The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases[J]. Physica A: Statistical Mechanics and its Applications, 1978, 90(2): 215-228. doi: 10.1016/0378-4371(78)90110-3 [6] THORNTON E. Viscosity and thermal conductivity of binary gas mixtures: xenon-krypton, xenon-argon, xenon-neon and xenon-helium[J]. Proceedings of the Physical Society, 1960, 76(1): 104-112. doi: 10.1088/0370-1328/76/1/313 [7] ZHOU B, JI Y, SUN J, et al. Modified turbulent Prandtl number model for helium–xenon gas mixture with low Prandtl number[J]. Nuclear Engineering and Design, 2020, 366: 110738. doi: 10.1016/j.nucengdes.2020.110738 [8] QIN H, FANG Y L, WANG C L, et al. Numerical investigation on heat transfer characteristics of HELIUM-XENON gas mixture[J]. International Journal of Energy Research, 2021, 45(8): 11745-11758. doi: 10.1002/er.5692 [9] KAYS W M, CRAWFORD M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993: 266-268. [10] WEIGAND B, FERGUSON J R, CRAWFORD M E. An extended Kays and Crawford turbulent Prandtl number model[J]. International Journal of Heat and Mass Transfer, 1997, 40(17): 4191-4196. doi: 10.1016/S0017-9310(97)00084-7 [11] TAYLOR M F, BAUER K E, Mceligot D M. Internal forced convection to low-Prandtl-number gas mixtures[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 13-25. doi: 10.1016/0017-9310(88)90218-9 [12] Kawamura Lab. DNS Database of Wall Turbulence and Heat Transfer: Text database of Poiseuille flow[DB/OL]. (2009-03-10)[2023-05-26]. https://www.rs.tus.ac.jp/t2lab/db/.