高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧密栅棒束通道氦氙混合气体流动传热特性数值模拟研究

张嘉鑫 鲍辉 丛腾龙 顾汉洋

张嘉鑫, 鲍辉, 丛腾龙, 顾汉洋. 紧密栅棒束通道氦氙混合气体流动传热特性数值模拟研究[J]. 核动力工程, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053
引用本文: 张嘉鑫, 鲍辉, 丛腾龙, 顾汉洋. 紧密栅棒束通道氦氙混合气体流动传热特性数值模拟研究[J]. 核动力工程, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053
Zhang Jiaxin, Bao Hui, Cong Tenglong, Gu Hanyang. Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel[J]. Nuclear Power Engineering, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053
Citation: Zhang Jiaxin, Bao Hui, Cong Tenglong, Gu Hanyang. Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel[J]. Nuclear Power Engineering, 2024, 45(4): 53-60. doi: 10.13832/j.jnpe.2024.04.0053

紧密栅棒束通道氦氙混合气体流动传热特性数值模拟研究

doi: 10.13832/j.jnpe.2024.04.0053
基金项目: 核反应堆系统设计技术重点实验室运行基金项目(LRSDT2022407)
详细信息
    作者简介:

    张嘉鑫(1999—),男,博士研究生,现主要从事高温气冷堆热力耦合方面的研究,E-mail: zhangjiaxinzjx@sjtu.edu.cn

    通讯作者:

    丛腾龙,E-mail: tlcong@sjtu.edu.cn

  • 中图分类号: TK124

Numerical Simulation on Flow Heat Transfer Characteristics of Helium-Xenon Mixture in Tight Lattice Rod Bundle Channel

  • 摘要: 针对氦氙冷却高温气冷堆堆芯设计和分析需求,本研究建立了一套涵盖物性模型、湍流模型与湍流普朗特数模型的氦氙混合气体三维流动传热模型,并基于此模型开展了棒束通道内氦氙混合气体流动传热数值分析,研究几何参数和运行参数对相关特性的影响规律。结果表明:包壳存在会对紧密栅棒束通道内流动传热带来较大的周向非均匀性,在子通道模拟及整体三维数值模拟中均应考虑包壳导热影响;除包壳外,紧密栅棒束通道内氦氙流动传热则主要受栅径比影响,同一工况下栅径比越大,混合气体对流换热越强烈。

     

  • 图  1  氦氙混合气体物性对比

    Figure  1.  Comparison of Physical Properties of Helium and Xenon Mixture

    图  2  不同Prt模型壁面温度计算结果对比

    Figure  2.  Comparison of Wall Temperature Calculation Results under Different Prt Models

    图  3  DNS泊肃叶流模拟几何及传热模型

    Figure  3.  Geometry and Heat Transfer Model of DNS Poiseuille Flow Simulation

    图  4  不同Prt模型下无量纲温度分布

    Figure  4.  Comparison of Dimensionless Temperature Distributions under Different Prt Models

    图  5  棒束通道几何及计算域示意图

    Figure  5.  Schematic Diagram of Rod Bundle Channel Geometry and Computational Domain

    图  6  计算域网格设置

    Figure  6.  Meshes of Computational Domain

    图  7  网格无关性验证

    Figure  7.  Grid Independence Validation

    图  8  流体通道出口温度分布

    Figure  8.  Temperature Distribution at the Outlet of Fluid Channel

    图  9  包壳外壁面热流密度分布

    Figure  9.  Heat Flux Density Distribution on the Outer Wall of Cladding

    图  10  传热及几何参数对Nu的影响

    Figure  10.  Effect of Heat Transfer and Geometric Parameters on Nu

    表  1  现有低Pr流体Prt模型

    Table  1.   Existing Prt Models of Fluids with Low Pr

    模型 关系式
    默认 Prt=0.85
    Kays[9] $ {Pr _{\text{t}}} = 1\bigg/\left\{ {\dfrac{1}{{2{{Pr }_{{\text{t,}}\infty }}}} + CP{e_t}\sqrt {\dfrac{1}{{{{Pr }_{{\text{t,}}\infty }}}}} - {{\left( {CP{e_{\text{t}}}} \right)}^2} \times \left[ {1 - {\text{exp}}\left( {\dfrac{{ - 1}}{{CP{e_{\text{t}}}\sqrt {{{Pr }_{{\text{t,}}\infty }}} }}} \right)} \right]} \right\}, {Pr _{{\text{t,}}\infty }} = 0.85 $
    Weigand[10] $ \begin{gathered}Pr_{\text{t}}=1\bigg/\left\{\dfrac{1}{2Pr_{\text{t,}\infty}}+CPe_{\mathrm{t}}\sqrt{\dfrac{1}{Pr_{\text{t},\infty}}}-\left(CPe_{\text{t}}\right)^2\times\left[1-\text{exp}\left(\dfrac{-1}{CPe_{\text{t}}\sqrt{Pr_{\text{t,}\infty}}}\right)\right]\right\} \\ Pr_{{\mathrm{t}},\infty}=0.85+\dfrac{100}{Pr\cdot Re^{0.888}} \\ \end{gathered} $
    Zhou[7] $ \begin{gathered}Pr\mathrm{_t}=1\bigg/\left\{\dfrac{1}{2Pr_{\text{t,}\infty}}+CPe_{\mathrm{t}}\sqrt{\dfrac{1}{Pr_{\text{t},\infty}}}-\left(CPe_{\text{t}}\right)^2\times\left[1-\text{exp}\left(\dfrac{-1}{CPe_{\text{t}}\sqrt{Pr_{\text{t},\infty}}}\right)\right]\right\} \\ Pr_{\text{t,}\infty}=Pr_{\text{t,local}}=0.80+\dfrac{30}{Pr\cdot Re_{\text{local}}^{0.888}},Re_{\text{local}}=\dfrac{\rho_{\text{local}}u_{\text{local}}D}{\mu_{\text{local}}} \\ \end{gathered} $
      注:Pe—贝克莱数;Re—雷诺数;C—第三维里系数;ρ—密度;u—轴向流速;D—水力直径;μ—粘性系数;下标t表示湍流参数,∞表示湍流核心区参数,local表示局部参数
    下载: 导出CSV

    表  2  实验工况

    Table  2.   Experimental Conditions

    工况编号 热流密度/(W·m−2) 质量流速/(kg·m−2·s−1) 入口温度/K 出口压力/Pa 摩尔质量M/(g·mol−1) Pr Re
    Run689 96326 357.1 295.5 480141 83.8 0.25 61987
    Run696 136770 156.4 297.9 563474 39.5 0.21 27897
    下载: 导出CSV
  • [1] 张泽,薛翔,王园丁,等. 空间核动力推进技术研究展望[J]. 火箭推进,2021, 47(5): 1-13.
    [2] TOURNIER J M P, EL-GENK M S. Properties of noble gases and binary mixtures for closed Brayton Cycle applications[J]. Energy Conversion and Management, 2008, 49(3): 469-492. doi: 10.1016/j.enconman.2007.06.050
    [3] 王志伟. 基于空间核电源系统的氦氙混合工质布雷顿循环特性研究[D]. 哈尔滨: 哈尔滨工业大学,2021.
    [4] TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit. San Diego: American Institute of Aeronautics and Astronautics, 2006.
    [5] KESTIN J, KHALIFA H E, WAKEHAM W A. The viscosity and diffusion coefficients of the binary mixtures of xenon with the other noble gases[J]. Physica A: Statistical Mechanics and its Applications, 1978, 90(2): 215-228. doi: 10.1016/0378-4371(78)90110-3
    [6] THORNTON E. Viscosity and thermal conductivity of binary gas mixtures: xenon-krypton, xenon-argon, xenon-neon and xenon-helium[J]. Proceedings of the Physical Society, 1960, 76(1): 104-112. doi: 10.1088/0370-1328/76/1/313
    [7] ZHOU B, JI Y, SUN J, et al. Modified turbulent Prandtl number model for helium–xenon gas mixture with low Prandtl number[J]. Nuclear Engineering and Design, 2020, 366: 110738. doi: 10.1016/j.nucengdes.2020.110738
    [8] QIN H, FANG Y L, WANG C L, et al. Numerical investigation on heat transfer characteristics of HELIUM-XENON gas mixture[J]. International Journal of Energy Research, 2021, 45(8): 11745-11758. doi: 10.1002/er.5692
    [9] KAYS W M, CRAWFORD M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993: 266-268.
    [10] WEIGAND B, FERGUSON J R, CRAWFORD M E. An extended Kays and Crawford turbulent Prandtl number model[J]. International Journal of Heat and Mass Transfer, 1997, 40(17): 4191-4196. doi: 10.1016/S0017-9310(97)00084-7
    [11] TAYLOR M F, BAUER K E, Mceligot D M. Internal forced convection to low-Prandtl-number gas mixtures[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 13-25. doi: 10.1016/0017-9310(88)90218-9
    [12] Kawamura Lab. DNS Database of Wall Turbulence and Heat Transfer: Text database of Poiseuille flow[DB/OL]. (2009-03-10)[2023-05-26]. https://www.rs.tus.ac.jp/t2lab/db/.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  10
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2024-03-08
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回