高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究

张军权 邓坚 罗彦 卢涛

张军权, 邓坚, 罗彦, 卢涛. 基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究[J]. 核动力工程, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069
引用本文: 张军权, 邓坚, 罗彦, 卢涛. 基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究[J]. 核动力工程, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069
Zhang Junquan, Deng Jian, Luo Yan, Lu Tao. Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning[J]. Nuclear Power Engineering, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069
Citation: Zhang Junquan, Deng Jian, Luo Yan, Lu Tao. Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning[J]. Nuclear Power Engineering, 2024, 45(4): 69-76. doi: 10.13832/j.jnpe.2024.04.0069

基于机器学习的淬冷沸腾最小膜态沸腾温度预测和灵敏度分析研究

doi: 10.13832/j.jnpe.2024.04.0069
基金项目: 国家自然科学基金(52176052,U2067210)
详细信息
    作者简介:

    张军权(1999—),男,在读硕士研究生,现主要从事淬冷沸腾方面研究,E-mail: 2022210429@buct.edu.cn

    通讯作者:

    罗 彦,E-mail: luoyan@mail.buct.edu.cn

  • 中图分类号: TL334

Research on Prediction and Sensitivity Analysis of Minimum Film Boiling Temperature of Quenching Boiling Based on Machine Learning

  • 摘要: 淬冷沸腾广泛应用于核反应堆失水事故后燃料棒的冷却过程中,最小膜态沸腾温度(Tmin)的确定对核反应堆的安全运行至关重要。本文基于文献的实验数据,选用了3种典型机器学习模型:随机森林(RF)、人工神经网络(ANN)和极端梯度提升(XGBoost),对淬冷沸腾Tmin进行预测和影响因素灵敏度分析研究。结果表明,机器学习方式能够有效提高淬冷沸腾Tmin预测的准确性,其预测性能相较于传统的经验关联式有大幅提升,其中RF模型预测效果最优,决定系数R2为0.9770;通过结合RF模型和Sobol’全局灵敏度方法,得到对淬冷沸腾Tmin影响最大的参数为冷却剂过冷度,其次为初始壁温,长径比、压力、热物性对其影响较小。本文研究成果将为提高核反应堆的安全性提供理论指导。

     

  • 图  1  RF模型流程图

    Figure  1.  Flowchart of Random Forest Model

    图  2  ANN模型流程图

    Figure  2.  Flowchart of Artificial Neural Network Model

    图  3  XGBoost 模型流程图

    Figure  3.  Flowchart of eXtreme Gradient Boosting Model

    图  4  机器学习和Henry模型预测淬冷沸腾Tmin的准确度对比   

    Figure  4.  Comparison of Accuracy between Machine Learning and Henry Model in Predicting Tmin for Quenching Boiling

    图  5  基于RF模型的淬冷沸腾Tmin影响因素全局灵敏度分析结果

    Figure  5.  Global Sensitivity Analysis Results of Influencing Factors of Quench Boiling Tmin Based on RF Model

    表  1  文献中的Tmin数据集

    Table  1.   Tmin Dataset in Literature

    作者 Tsub/℃ T0/℃ P/MPa L/D βf/βw 包壳材料 数据点数量
    Li等[7] 0~40.0 750 0.1 5 0.057 不锈钢 5
    Lee and Kim[8] 0 600 0.1 5 0.002~0.057 铜,不锈钢,锆合金 3
    Yeom等[9-10] 0~30.0 650 0.1~0.623 5.1~5.15 0.115~0.531 锆合金,氧化锆 35
    Ho等[11] 0~30.0 600 0.1 4.67 0.012 黄铜 2
    Sakurai等[3] 0 526 0.1~2.063 16.67~41.6 0.015 121
    Peterson and Bajorek[12] 0~30.85 675 0.1~3.003 6.35~6.68 0.017~0.119 锆合金,碳钢,不锈钢 129
    Ebrahim等[13] 2.0~20.0 450~650 0.1 26.7 0.032~0.066 锆合金,镍铁合金,不锈钢 84
    Xiong等[14] 0~20.0 600 0.1 5.75 0.03 铁铬铝合金 5
    Lee等[4] 0 400 0.1 6 0.002~0.057 铜,不锈钢 2
    Hurley and Duarte[15] 2.0~12.0 510 0.1 31.58 0.026~0.053 镍铜合金,镍铁合金,不锈钢 11
    张琪琪等[16] 5.0~20.0 620 0.1 6.5 0.057 不锈钢 4
    王泽锋等[17] 5.0~20.0 600 0.1 5.75 0.102 锆合金 5
    Xiong等[18] 5.0~25.0 600 0.1 6.5 0.03~0.102 锆合金,铁铬铝合金 10
    下载: 导出CSV

    表  2  不同决策树数量条件下RF模型预测性能对比

    Table  2.   Comparison of Prediction Performance of RF Model under Different Decision Tree Numbers

    决策树数量 RMSE R2
    10 20.1431 0.9725
    20 19.9435 0.9746
    30 19.7747 0.9750
    40 19.8531 0.9748
    50 19.3697 0.9760
    60 18.9910 0.9770
    70 19.2617 0.9763
    80 19.3298 0.9761
    90 19.5394 0.9756
    100 19.6504 0.9753
    下载: 导出CSV

    表  3  不同隐藏层架构条件下ANN模型预测性能对比

    Table  3.   Comparison of Prediction Performance of ANN Model under Different Hidden Layer Architectures

    架构 RMSE R2
    5-60-1 34.7980 0.9221
    5-40-40-1 33.5517 0.9277
    5-50-50-1 31.7392 0.9354
    5-60-60-1 31.0522 0.9383
    5-40-40-40-1 32.0389 0.9339
    5-50-50-50-1 30.8654 0.9389
    5-60-60-60-1 31.0644 0.9374
    下载: 导出CSV

    表  4  不同弱学习器数量条件下XGBoost模型预测性能对比    

    Table  4.   Comparison of Prediction Performance of XGBoost Model under Different Weak Learner Numbers

    弱学习器数量 RMSE R2
    50 36.12307 0.9166
    100 35.05868 0.9215
    下载: 导出CSV
  • [1] 熊平. 圆柱骤冷沸腾表面热流密度反演及沸腾传热特性研究[D]. 北京: 北京化工大学,2021.
    [2] IN W K, LEE K G. Quenching experiments with CrAl-coated zircaloy cladding in reflooding water flows[J]. Energies, 2021, 14(7): 1859. doi: 10.3390/en14071859
    [3] SAKURAI A, SHIOTSU M, HATA K. Effect of system pressure on film-boiling heat transfer, minimum heat flux, and minimum temperature[J]. Nuclear Science and Engineering, 1984, 88(3): 321-330. doi: 10.13182/NSE84-A18586
    [4] LEE C Y, CHUN T H, IN W K. Effect of change in surface condition induced by oxidation on transient pool boiling heat transfer of vertical stainless steel and copper rodlets[J]. International Journal of Heat and Mass Transfer, 2014, 79: 397-407. doi: 10.1016/j.ijheatmasstransfer.2014.08.030
    [5] ZHAO X G, SHIRVAN K, SALKO R K, et al. On the prediction of critical heat flux using a physics-informed machine learning-aided framework[J]. Applied Thermal Engineering, 2020, 164: 114540. doi: 10.1016/j.applthermaleng.2019.114540
    [6] ZHANG J F, ZHONG D W, SHI H P, et al. Machine learning prediction of critical heat flux on downward facing surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122857. doi: 10.1016/j.ijheatmasstransfer.2022.122857
    [7] LI J Q, MOU L W, ZHANG H Y, et al. Pool boiling heat transfer and quench front velocity during quenching of a rodlet in subcooled water: effects of the degree of subcooling[J]. Experimental Heat Transfer, 2018, 31(2): 148-160. doi: 10.1080/08916152.2017.1397819
    [8] LEE C Y, KIM S. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool[J]. Nuclear Engineering and Design, 2017, 313: 118-128. doi: 10.1016/j.nucengdes.2016.12.005
    [9] YEOM H, JO H, JOHNSON G, et al. Transient pool boiling heat transfer of oxidized and roughened Zircaloy-4 surfaces during water quenching[J]. International Journal of Heat and Mass Transfer, 2018, 120: 435-446. doi: 10.1016/j.ijheatmasstransfer.2017.12.060
    [10] YEOM H. High temperature corrosion and heat transfer studies of zirconium-silicide coatings for light water reactor cladding applications[D]. Madison: Univ. of Wisconsin-Madison, 2017.
    [11] HO Y H, HO M X, PAN C. The effects of subcooling on quenching of a vertical brass cylinder with heating power[C]//International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2015, 56864: V001T04A001

    HO Y H, HO M X, PAN C. The effects of subcooling on quenching of a vertical brass cylinder with heating power[C]//International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2015, 56864: V001T04A001
    [12] PETERSON L J, BAJOREK S M. Experimental investigation of minimum film boiling temperature for vertical cylinders at elevated pressure[C]//10th International Conference on Nuclear Engineering. Arlington: American Society of Mechanical Engineers, 2002: 883-892.
    [13] EBRAHIM S A, CHANG S, CHEUNG F B, et al. Parametric investigation of film boiling heat transfer on the quenching of vertical rods in water pool[J]. Applied Thermal Engineering, 2018, 140: 139-146. doi: 10.1016/j.applthermaleng.2018.05.021
    [14] XIONG J B, WANG Z F, XIONG P, et al. Experimental investigation on transient boiling heat transfer during quenching of fuel cladding surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119131. doi: 10.1016/j.ijheatmasstransfer.2019.119131
    [15] HURLEY P, DUARTE J P. Implementation of fiber optic temperature sensors in quenching heat transfer analysis[J]. Applied Thermal Engineering, 2021, 195: 117257. doi: 10.1016/j.applthermaleng.2021.117257
    [16] 张琪琪,熊平,周佳樾,等. 不锈钢棒材形状对淬冷沸腾的影响研究[J]. 工程热物理学报,2023, 44(2): 463-467.
    [17] 王泽锋,邓坚,王嘉庚,等. 锆-4在冷却水中的骤冷沸腾传热实验研究[J]. 核动力工程,2021, 42(1): 186-191.
    [18] XIONG P, LU T, LUO Y, et al. Study on liquid–vapor interface oscillation characteristics and heat transfer of film boiling during quenching of fuel cladding surfaces[J]. Applied Thermal Engineering, 2023, 219: 119615. doi: 10.1016/j.applthermaleng.2022.119615
    [19] SALTELLI A, RATTO M, TARANTOLA S, et al. Sensitivity analysis practices: strategies for model-based inference[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1109-1125.
    [20] SOBOL' I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 784-802.
    [21] 杨龙,严振华,王明哲. QFD与Sobol’法在武器装备需求分析中的应用[J]. 舰船电子工程,2012, 32(3): 107-109,116. doi: 10.3969/j.issn.1627-9730.2012.03.040
    [22] ZADEH F K, NOSSENT J, SARRAZIN F, et al. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model[J]. Environmental Modelling & Software, 2017, 91: 210-222.
    [23] HENRY R E. A correlation for the minimum film boiling temperature[J]. AIChE Symposium Series, 1974, 70(138): 81-90.
    [24] FOX E W, VER HOEF J M, OLSEN A R. Comparing spatial regression to random forests for large environmental data sets[J]. PLoS One, 2020, 15(3): e0229509. doi: 10.1371/journal.pone.0229509
    [25] MEYER H, PEBESMA E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models[J]. Methods in Ecology and Evolution, 2021, 12(9): 1620-1633. doi: 10.1111/2041-210X.13650
    [26] TAKOUTSING B, HEUVELINK G B M. Comparing the prediction performance, uncertainty quantification and extrapolation potential of regression kriging and random forest while accounting for soil measurement errors[J]. Geoderma, 2022, 428: 116192. doi: 10.1016/j.geoderma.2022.116192
    [27] MUCKLEY E S, SAAL J E, MEREDIG B, et al. Interpretable models for extrapolation in scientific machine learning[J]. Digital Discovery, 2023, 2(5): 1425-1435. doi: 10.1039/D3DD00082F
    [28] BOOKER D J, WHITEHEAD A L. Inside or outside: quantifying extrapolation across river networks[J]. Water Resources Research, 2018, 54(9): 6983-7003. doi: 10.1029/2018WR023378
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  13
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2024-01-02
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回