高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD方法的铅铋堆组件操作头射流搅混特性研究

张吉 王莹杰 王明军 田文喜 秋穗正 苏光辉

张吉, 王莹杰, 王明军, 田文喜, 秋穗正, 苏光辉. 基于CFD方法的铅铋堆组件操作头射流搅混特性研究[J]. 核动力工程, 2024, 45(4): 77-86. doi: 10.13832/j.jnpe.2024.04.0077
引用本文: 张吉, 王莹杰, 王明军, 田文喜, 秋穗正, 苏光辉. 基于CFD方法的铅铋堆组件操作头射流搅混特性研究[J]. 核动力工程, 2024, 45(4): 77-86. doi: 10.13832/j.jnpe.2024.04.0077
Zhang Ji, Wang Yingjie, Wang Mingjun, Tian Wenxi, Qiu Suizheng, Su Guanghui. Study on Jet Mixing Characteristics of Lead-Bismuth Eutectic Cooled Reactor Assembly Head Based on CFD Method[J]. Nuclear Power Engineering, 2024, 45(4): 77-86. doi: 10.13832/j.jnpe.2024.04.0077
Citation: Zhang Ji, Wang Yingjie, Wang Mingjun, Tian Wenxi, Qiu Suizheng, Su Guanghui. Study on Jet Mixing Characteristics of Lead-Bismuth Eutectic Cooled Reactor Assembly Head Based on CFD Method[J]. Nuclear Power Engineering, 2024, 45(4): 77-86. doi: 10.13832/j.jnpe.2024.04.0077

基于CFD方法的铅铋堆组件操作头射流搅混特性研究

doi: 10.13832/j.jnpe.2024.04.0077
详细信息
    作者简介:

    张 吉(1998—),男,博士研究生,现主要从事核反应堆热工水力方面研究,E-mail: zj12624787@stu.xjtu.edu.cn

    通讯作者:

    王明军,E-mail: wangmingjun@mail.xjtu.edu.cn

  • 中图分类号: TL331

Study on Jet Mixing Characteristics of Lead-Bismuth Eutectic Cooled Reactor Assembly Head Based on CFD Method

  • 摘要: 在铅铋堆上腔室内,不同功率组件流出的铅铋搅混过程中流体温度波动可能导致固体结构发生热疲劳,危害铅铋堆运行安全。本文基于计算流体动力学(CFD)方法,建立了适用于铅铋堆组件操作头射流模拟的计算模型并通过实验数据进行了验证,之后对不同入口参数的操作头射流工况进行了模拟。研究结果表明:入口温差的增加会导致操作头下游轴向截面上温度分布不均匀性显著增加,且影响范围持续到测量柱的位置,在计算工况范围内,温差每减小20 K时,下游各个截面上温度均方根约减小23.5%;入口速度增加使得二次流增加,但是二次流强度会减小,在计算范围内搅混程度随入口速度增加呈现先减小后增大的变化趋势。本文可为铅铋堆组件操作头下游流场分析、操作头结构优化设计和堆芯流量分配设计等研究提供参考。

     

  • 图  1  3D实验段

    Figure  1.  3D Experimental Section

    图  2  计算域尺寸及模型

    Figure  2.  Computational Domain Size and Model

    图  3  计算结果与实验测量值的对比

    R—与实验段轴向中心线的距离

    Figure  3.  Comparison between Calculated Results and Experimental Measurements

    图  4  实验段内温度及流线分布

    Figure  4.  Temperature and Streamline Distribution in the Experimental Section

    图  5  三操作头模型

    Figure  5.  Three-head Model

    图  6  三操作头模型的网格

    Figure  6.  Mesh of Three-head Model

    图  7  网格无关性分析

    Figure  7.  Mesh Independence Analysis

    图  8  工况1的瞬时速度分布

    Figure  8.  Instantaneous Velocity Distribution for Case 1

    图  9  工况1的瞬时二次流分布

    Figure  9.  Instantaneous Secondary Flow Distribution for Case 1

    图  10  工况1的瞬时温度场分布

    Figure  10.  Instantaneous Temperature Field Distribution for Case 1

    图  11  工况1、2、3温度均方根及搅混程度分布

    Figure  11.  Root Mean Square of Temperature and Distribution of Mixing Degree for Cases 1, 2 and 3

    图  12  工况1、2、3二次流及二次流强度分布

    Figure  12.  Secondary Flow and Secondary Flow Intensity Distribution for Cases 1, 2 and 3

    图  13  工况1、4、5二次流及二次流强度分布

    Figure  13.  Secondary Flow and Secondary Flow Intensity Distribution for Cases 1, 4 and 5

    图  14  工况1、4、5温度均方根及搅混程度分布

    Figure  14.  Root Mean Square of Temperature and Distribution of Mixing Degree for Cases 1, 4 and 5

    表  1  铅铋合金物性

    Table  1.   Physical Properties of Lead-Bismuth Eutectic

    物理量 表达式
    ρ/(kg·m−3) ρ=11096−1.3236T
    cP/(J·kg−1·K−1) $ c_P=159-2.72\times10^{-2}T+7.12\times10^{-6}T^2 $
    λ/(W·m−1·K−1) $ \lambda=3.61+1.517 \times 10^{-2} T-1.741 \times 10^{-6} T^{2} $
    μ/(Pa·s) $\mu=4.94 \times 10^{-4} \exp \left(\dfrac{754.1}{T}\right) $
    下载: 导出CSV

    表  2  实验段计算边界条件设置

    Table  2.   Calculation Boundary Conditions of Experimental Section

    边界 边界条件 参数 参数值
    入口 流量入口 流量/(kg·s−1) 1.3
    出口 压力出口 压力/Pa 0
    侧壁面加热区域 定热流密度边界 热流密度/(W·m−2) 36396.48
    侧壁面非加热区域 定热流密度边界 热流密度/(W·m−2) −190.86
    其余壁面 绝热边界
    下载: 导出CSV

    表  3  三操作头模型计算工况

    Table  3.   Calculated Conditions for Three-head Model

    工况 低温铅铋 高温铅铋 温差/K
    速度/(m·s−1) 温度/K 速度/(m·s−1) 温度/K
    1 0.5 573 0.5 658 85
    2 0.5 583 0.5 648 65
    3 0.5 593 0.5 638 45
    4 1.0 573 1.0 658 85
    5 0.25 573 0.25 658 85
    下载: 导出CSV
  • [1] 袁蓝飞,王成龙,刘志鹏,等. 横摇运动下铅铋回路热工水力特性数值研究[J]. 原子能科学技术,2023, 57(6): 1151-1158. doi: 10.7538/yzk.2022.youxian.0640
    [2] 何少鹏,王明军,章静,等. 基于OpenFOAM的液态金属铅铋三维流动换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(6): 1007-1014.
    [3] CHOI S K, KIM S O. Evaluation of turbulence models for thermal striping in a triple jet[J]. Journal of Pressure Vessel Technology, 2007, 129(4): 583-592. doi: 10.1115/1.2767337
    [4] CHELLAPANDI P, CHETAL S C, RAJ B. Thermal striping limits for components of sodium cooled fast spectrum reactors[J]. Nuclear Engineering and Design, 2009, 239(12): 2754-2765. doi: 10.1016/j.nucengdes.2009.08.014
    [5] WANG L Z, BAI Y Q, JIN M, et al. Comparison analysis of temperature fluctuations for double jet of liquid metal cooled fast reactor[J]. Annals of Nuclear Energy, 2016, 94: 802-807. doi: 10.1016/j.anucene.2016.04.042
    [6] WANG Y J, LAI Z X, QIU H R, et al. Experimental and numerical analysis of the liquid metal mixing phenomenon in complex jets of Gen-IV nuclear system[J]. International Journal of Heat and Mass Transfer, 2023, 213: 124330. doi: 10.1016/j.ijheatmasstransfer.2023.124330
    [7] GRISHCHENKO D, PAPUKCHIEV A, LIU C, et al. TALL-3D open and blind benchmark on natural circulation instability[J]. Nuclear Engineering and Design, 2020, 358: 110386. doi: 10.1016/j.nucengdes.2019.110386
    [8] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [9] WANG Y J, WANG M J, ZHANG J, et al. Large eddy simulation on the mixing characteristics of liquid sodium at the core outlet of sodium cooled fast reactors (SFR)[J]. Annals of Nuclear Energy, 2021, 159: 108347. doi: 10.1016/j.anucene.2021.108347
    [10] WANG Y J, WANG M J, JIA K, et al. Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system[J]. Energy, 2022, 256: 124681. doi: 10.1016/j.energy.2022.124681
    [11] HUANG X X, HE S S. Study of a lead-bismuth eutectic jet issued into a heated cavity using large eddy simulation[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123407. doi: 10.1016/j.ijheatmasstransfer.2022.123407
    [12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [13] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103.
    [14] 孙畅,焦守华,柴翔,等. 基于CFD方法的铅铋冷却燃料棒束的热工水力特性分析[J]. 原子能科学技术,2020, 54(8): 1386-1394.
    [15] 刘书勇,余大利,梅华平,等. 三角形棒束内铅铋湍流普朗特数模型研究[J]. 核技术,2022, 45(3): 030604.
    [16] CHENG X, TAK N L. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
    [17] FAZIO C, SOBOLEV V P, AERTS A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition: JRC100764[R].Organisation for Economic Co-Operation and Development, 2015.
    [18] GRISHCHENKO D, JELTSOV M, KÖÖP K, et al. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes[J]. Nuclear Engineering and Design, 2015, 290: 144-153. doi: 10.1016/j.nucengdes.2014.11.045
    [19] JELTSOV M, GRISHCHENKO D, KUDINOV P. Validation of Star-CCM+ for liquid metal thermal-hydraulics using TALL-3D experiment[J]. Nuclear Engineering and Design, 2019, 341: 306-325. doi: 10.1016/j.nucengdes.2018.11.015
    [20] 吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208.
    [21] GRASSO G, PETROVICH C, MATTIOLI D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032
    [22] WU G W, JIN M, CHEN J Y, et al. Assessment of RVACS performance for small size lead-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 77: 310-317. doi: 10.1016/j.anucene.2014.11.028
    [23] WANG S J, MUJUMDAR A S. A numerical study of flow and mixing characteristics of three-dimensional confined turbulent opposing jets: Unequal jets[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(10): 1068-1074. doi: 10.1016/j.cep.2005.02.003
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  13
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2023-11-22
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回