Study on Jet Mixing Characteristics of Lead-Bismuth Eutectic Cooled Reactor Assembly Head Based on CFD Method
-
摘要: 在铅铋堆上腔室内,不同功率组件流出的铅铋搅混过程中流体温度波动可能导致固体结构发生热疲劳,危害铅铋堆运行安全。本文基于计算流体动力学(CFD)方法,建立了适用于铅铋堆组件操作头射流模拟的计算模型并通过实验数据进行了验证,之后对不同入口参数的操作头射流工况进行了模拟。研究结果表明:入口温差的增加会导致操作头下游轴向截面上温度分布不均匀性显著增加,且影响范围持续到测量柱的位置,在计算工况范围内,温差每减小20 K时,下游各个截面上温度均方根约减小23.5%;入口速度增加使得二次流增加,但是二次流强度会减小,在计算范围内搅混程度随入口速度增加呈现先减小后增大的变化趋势。本文可为铅铋堆组件操作头下游流场分析、操作头结构优化设计和堆芯流量分配设计等研究提供参考。
-
关键词:
- 射流搅混 /
- 堆芯出口 /
- 铅铋合金 /
- 计算流体动力学(CFD)
Abstract: In the upper chamber of the Lead-Bismuth Eutectic (LBE) cooled reactor, fluid temperature fluctuations during the LBE mixing process from different power assemblies may lead to thermal fatigue of the solid structure, threatening the safety of LBE reactor operation. Based on the Computational Fluid Dynamics (CFD) method, this paper established a computational model suitable for the jet simulation of the LBE reactor assembly head and validated it through experimental data. Then, simulations of jet flow conditions with various inlet parameters were carried out. The research results show that the increase in the inlet temperature difference will lead to a significant increase in the temperature distribution inhomogeneity on the axial section downstream of the assembly head, and the influence range continues to the position of the measuring column. Within the calculation range, when the temperature difference decreases by 20 K, the root mean square temperature of each downstream section decreases by approximately 23.5%. The increase in inlet velocity causes the secondary flow to increase, but the intensity of the secondary flow will decrease. Within the calculation range, the degree of mixing first decreases and then increases as the inlet velocity increases. This paper can provide reference for research on flow field analysis downstream of the assembly head, structural optimization design of the assembly head, and LBE reactor core flow distribution design.-
Key words:
- Jet mixing /
- Core outlet /
- Lead-Bismuth Eutectic /
- CFD
-
表 1 铅铋合金物性
Table 1. Physical Properties of Lead-Bismuth Eutectic
物理量 表达式 ρ/(kg·m−3) ρ=11096−1.3236T cP/(J·kg−1·K−1) $ c_P=159-2.72\times10^{-2}T+7.12\times10^{-6}T^2 $ λ/(W·m−1·K−1) $ \lambda=3.61+1.517 \times 10^{-2} T-1.741 \times 10^{-6} T^{2} $ μ/(Pa·s) $\mu=4.94 \times 10^{-4} \exp \left(\dfrac{754.1}{T}\right) $ 表 2 实验段计算边界条件设置
Table 2. Calculation Boundary Conditions of Experimental Section
边界 边界条件 参数 参数值 入口 流量入口 流量/(kg·s−1) 1.3 出口 压力出口 压力/Pa 0 侧壁面加热区域 定热流密度边界 热流密度/(W·m−2) 36396.48 侧壁面非加热区域 定热流密度边界 热流密度/(W·m−2) −190.86 其余壁面 绝热边界 表 3 三操作头模型计算工况
Table 3. Calculated Conditions for Three-head Model
工况 低温铅铋 高温铅铋 温差/K 速度/(m·s−1) 温度/K 速度/(m·s−1) 温度/K 1 0.5 573 0.5 658 85 2 0.5 583 0.5 648 65 3 0.5 593 0.5 638 45 4 1.0 573 1.0 658 85 5 0.25 573 0.25 658 85 -
[1] 袁蓝飞,王成龙,刘志鹏,等. 横摇运动下铅铋回路热工水力特性数值研究[J]. 原子能科学技术,2023, 57(6): 1151-1158. doi: 10.7538/yzk.2022.youxian.0640 [2] 何少鹏,王明军,章静,等. 基于OpenFOAM的液态金属铅铋三维流动换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(6): 1007-1014. [3] CHOI S K, KIM S O. Evaluation of turbulence models for thermal striping in a triple jet[J]. Journal of Pressure Vessel Technology, 2007, 129(4): 583-592. doi: 10.1115/1.2767337 [4] CHELLAPANDI P, CHETAL S C, RAJ B. Thermal striping limits for components of sodium cooled fast spectrum reactors[J]. Nuclear Engineering and Design, 2009, 239(12): 2754-2765. doi: 10.1016/j.nucengdes.2009.08.014 [5] WANG L Z, BAI Y Q, JIN M, et al. Comparison analysis of temperature fluctuations for double jet of liquid metal cooled fast reactor[J]. Annals of Nuclear Energy, 2016, 94: 802-807. doi: 10.1016/j.anucene.2016.04.042 [6] WANG Y J, LAI Z X, QIU H R, et al. Experimental and numerical analysis of the liquid metal mixing phenomenon in complex jets of Gen-IV nuclear system[J]. International Journal of Heat and Mass Transfer, 2023, 213: 124330. doi: 10.1016/j.ijheatmasstransfer.2023.124330 [7] GRISHCHENKO D, PAPUKCHIEV A, LIU C, et al. TALL-3D open and blind benchmark on natural circulation instability[J]. Nuclear Engineering and Design, 2020, 358: 110386. doi: 10.1016/j.nucengdes.2019.110386 [8] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836 [9] WANG Y J, WANG M J, ZHANG J, et al. Large eddy simulation on the mixing characteristics of liquid sodium at the core outlet of sodium cooled fast reactors (SFR)[J]. Annals of Nuclear Energy, 2021, 159: 108347. doi: 10.1016/j.anucene.2021.108347 [10] WANG Y J, WANG M J, JIA K, et al. Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system[J]. Energy, 2022, 256: 124681. doi: 10.1016/j.energy.2022.124681 [11] HUANG X X, HE S S. Study of a lead-bismuth eutectic jet issued into a heated cavity using large eddy simulation[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123407. doi: 10.1016/j.ijheatmasstransfer.2022.123407 [12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149 [13] 邓诗雨,卢涛,邓坚,等. 液态铅铋合金湍流普朗特数及RANS模型优选[J]. 核动力工程,2023, 44(2): 98-103. [14] 孙畅,焦守华,柴翔,等. 基于CFD方法的铅铋冷却燃料棒束的热工水力特性分析[J]. 原子能科学技术,2020, 54(8): 1386-1394. [15] 刘书勇,余大利,梅华平,等. 三角形棒束内铅铋湍流普朗特数模型研究[J]. 核技术,2022, 45(3): 030604. [16] CHENG X, TAK N L. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006 [17] FAZIO C, SOBOLEV V P, AERTS A, et al. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition: JRC100764[R].Organisation for Economic Co-Operation and Development, 2015. [18] GRISHCHENKO D, JELTSOV M, KÖÖP K, et al. The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes[J]. Nuclear Engineering and Design, 2015, 290: 144-153. doi: 10.1016/j.nucengdes.2014.11.045 [19] JELTSOV M, GRISHCHENKO D, KUDINOV P. Validation of Star-CCM+ for liquid metal thermal-hydraulics using TALL-3D experiment[J]. Nuclear Engineering and Design, 2019, 341: 306-325. doi: 10.1016/j.nucengdes.2018.11.015 [20] 吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208. [21] GRASSO G, PETROVICH C, MATTIOLI D, et al. The core design of ALFRED, a demonstrator for the European lead-cooled reactors[J]. Nuclear Engineering and Design, 2014, 278: 287-301. doi: 10.1016/j.nucengdes.2014.07.032 [22] WU G W, JIN M, CHEN J Y, et al. Assessment of RVACS performance for small size lead-cooled fast reactor[J]. Annals of Nuclear Energy, 2015, 77: 310-317. doi: 10.1016/j.anucene.2014.11.028 [23] WANG S J, MUJUMDAR A S. A numerical study of flow and mixing characteristics of three-dimensional confined turbulent opposing jets: Unequal jets[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(10): 1068-1074. doi: 10.1016/j.cep.2005.02.003