Numerical Study on Characteristics of Subcooled Flow Boiling with the Coupling Effect of 3×3 Petal-Shaped Fuel Rods and Coolant
-
摘要: 为推动花瓣形燃料棒在水冷堆中的工程应用,必须了解冷却剂在花瓣形燃料棒束子通道内过冷流动沸腾特性。为此,本研究采用欧拉两流体模型和壁面沸腾模型,开展了3×3花瓣形燃料棒-冷却剂耦合作用下过冷流动沸腾数值研究。利用模拟结果探究不同子通道内空泡份额、壁面温度、横向流速等参数分布,以及均匀加热方式与轴向余弦加热方式对流动与换热的影响。结果表明,角燃料棒上最先出现过冷沸腾,随着加热功率增加,角、边、中心燃料棒上的过冷沸腾起始点(ONB)位置不均匀性减小;在相同加热条件下,角燃料棒上ONB处壁面过热度最大,其次是边燃料棒,中心燃料棒最小;燃料棒内凹弧处表面热流密度大于外凸弧处。总加热量一定的条件下,余弦加热和均匀加热相比,其壁面分布不均匀性降低。
-
关键词:
- 小型反应堆 /
- 花瓣形燃料棒 /
- 过冷沸腾 /
- 过冷沸腾起始点(ONB)
Abstract: In order to promote the engineering application of petal-shaped fuel rods in water-cooled reactors, it is necessary to understand the subcooled flow boiling characteristics of coolant in the sub-channels of petal-shaped fuel rod bundles. The Euler model and wall boiling model were applied to numerically simulate the subcooled flow boiling under the coupling effect of 3×3 petal-shaped fuel rods and coolant. Using the simulation results, the distribution of parameters such as void fraction, wall temperature and transverse flow velocity in different sub-channels, as well as the effects of uniform heating mode and axial cosine heating mode on flow and heat transfer were explored. The research results indicate that subcooled boiling occurs first on corner fuel rods, and with the increase of heating power, the position unevenness of onset of nucleate boilding (ONB) of subcooled boiling of the corner, edge and center fuel rods decreases. Under the same heating conditions, the wall superheat at ONB on the corner fuel rod is the largest, followed by the edge fuel rod and the center fuel rod is the smallest. The surface heat flux at the inner concave arc of the fuel rod is greater than that at the outer convex arc. Under the condition of constant total heating, cosine heating reduces the non-uniformity of wall temperature compared with uniform heating. -
表 1 几何参数
Table 1. Geometric Parameters
几何参数 参数值 棒直径/外弧半径(D/R1) 5.147 节径比(LP/D) 1.07 HP/m 0.5 L/m 0.5 表 2 边界条件
Table 2. Boundary Conditions
边界条件区域 类型 入口 速度入口 出口 压力出口 燃料棒壁面 均匀热流/余弦加热 外壁面 周期性边界 -
[1] SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015 [2] CONBOY T M, MCKRELL T J, KAZIMI M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58 [3] CONBOY T M, MCKRELL T J, KAZIMI M S. Evaluation of helical-cruciform fuel rod assemblies for high-power-density LWRs[J]. Nuclear Technology, 2014, 188(2): 139-153. doi: 10.13182/NT13-104 [4] 张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. [5] 邹旭毛,高勇,朱俊志,等. 高性能燃料棒束通道内的流动和换热特性研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 中国科学院近代物理研究所,2019. [6] XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428 [7] FANG Y L, QIN H, WANG C L, et al. Numerical investigation on thermohydraulic performance of high temperature hydrogen in twisted rod channels[J]. Annals of Nuclear Energy, 2021, 161: 108434. doi: 10.1016/j.anucene.2021.108434 [8] 刘畅. 螺旋型燃料棒束内流动与换热特性数值模拟[D]. 哈尔滨: 哈尔滨工业大学,2020. [9] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593 [10] SHIRVAN K. Numerical investigation of the boiling crisis for helical cruciform-shaped rods at high pressures[J]. International Journal of Multiphase Flow, 2016, 83: 51-61. doi: 10.1016/j.ijmultiphaseflow.2016.03.014 [11] CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111 [12] ISHII M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843-855. doi: 10.1002/aic.690250513 [13] TOMIYAMA A, TAMAI H, ZUN I, et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858. doi: 10.1016/S0009-2509(02)00085-4 [14] ANTAL S P, LAHEY JR R T, FLAHERTY J E. Analysis of phase distribution in fully developed laminar bubbly two-phase flow[J]. International Journal of Multiphase Flow, 1991, 17(5): 635-652. doi: 10.1016/0301-9322(91)90029-3 [15] DE BERTODANO M L. Turbulent bubbly two-phase flow in a triangular duct[D]. Troy: Rensselaer Polytechnic Institute, 1992. [16] SATO Y, SEKOGUCHI K. Liquid velocity distribution in two-phase bubble flow[J]. International Journal of Multiphase Flow, 1975, 2(1): 79-95. doi: 10.1016/0301-9322(75)90030-0 [17] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//International Heat Transfer Conference Digital Library. Jerusalem: Begell House Inc. , 1990. [18] ÜNAL H C. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2[J]. International Journal of Heat and Mass Transfer, 1976, 19(6): 643-649. doi: 10.1016/0017-9310(76)90047-8 [19] 杜利鹏,蒋泽平,崔军,等. 花瓣形燃料元件棒束通道内过冷流动沸腾特性数值研究[J]. 原子能科学技术,2023, 57(2): 264-275. [20] LIM J H, PARK M, SHIN S M, et al. Exploring the onset of nucleate boiling with Hypervapotron channel for Tokamak cooling system application[J]. Applied Thermal Engineering, 2022, 209: 118334. doi: 10.1016/j.applthermaleng.2022.118334 [21] 房贤仕,李秋英,陈杰,等. 管内气液两相流流型研究现状与发展[J]. 东北电力大学学报,2022, 42(4): 1-7. [22] 马爽,李洪伟. 矩形并联微通道中流量分配与流动沸腾传热特性实验研究[J]. 东北电力大学学报,2021, 41(6): 33-42.