Semi-Analytical Solution of Temperature Rise Caused by Irradiation Effect for Perforated Plates with Square Penetration Patterns in Reactor Vessel Internals
-
摘要: 压水堆堆内构件中存在较厚的多孔板结构,其辐照效应带来的温升比较显著。由于结构的复杂性,其温升一般通过有限元方法计算得到。针对堆内构件正方形布置开圆孔平板结构,本文采用半解析方法计算其在辐照效应下的最大温升,得到了该结构的温升计算公式,并将其计算结果与有限元结果进行对比,结果表明:当γ释热率峰值的径向范围大于4倍孔心间距时,公式计算的最大温升与有限元结果偏差在2%以内,且公式计算的最大温升所在位置厚度方向的温度分布与有限元结果比较吻合。Abstract: In Reactor Vessel Internals (RVI), the temperature rise caused by the irradiation effect is significant for the thick perforated plates. Due to the complexity of the structure, its temperature rise is generally calculated by finite element method. In this paper, the semi-analytical method is used to calculate the maximum temperature rise of the perforated plate with square penetration patterns under irradiation effect. The calculation formula of the temperature rise of the structure is obtained, and the calculation results are compared with the finite element results. The results show that the deviation between the maximum temperature rise calculated by the formula and the finite element results is less than 2% when the radial range of the peak value of γ heat release rate is greater than 4 times the spacing between holes, and the temperature distribution in the thickness direction where the maximum temperature rise is calculated by the formula is in good agreement with the finite element results.
-
表 1 算例列表
Table 1. List of Calculating Cases
算例 P/mm h/mm t/mm μ/mm−1 Do式(18)/mm 1 100 20 50 0.027 129.488 2 125 55 150 0.027 154.782 3 150 80 250 0.027 183.197 4 140 70 350 0.027 171.177 5 140 70 450 0.027 171.133 6 140 70 450 0.100 173.960 7 140 70 450 0.050 172.269 8 140 70 450 0.010 169.887 9 140 70 450 0.005 169.333 10 140 70 450 0.001 168.643 表 2 算例最大温升结果
Table 2. Maximum Temperature Rise for Each Calculating Case
算例 最大温升/℃ 多孔板1/8
有限元模型正方形圆孔结构
1/8有限元模型圆环结构轴
对称有限元模型式(2) 一阶单元 二阶单元 一阶单元 二阶单元 一阶单元 二阶单元 1 36.32 35.55 35.50 35.40 36.08 36.44 36.08 2 83.63 83.70 83.30 83.27 84.34 84.34 84.33 3 115.14 115.46 115.06 115.04 115.42 115.41 115.41 4 103.05 103.22 102.82 102.79 102.84 102.84 102.83 5 103.09 103.22 102.82 102.79 102.80 102.79 102.78 6 18.97 18.94 18.93 18.91 18.98 18.97 18.97 7 50.73 50.71 50.58 50.55 50.58 50.57 50.57 8 228.97 230.02 228.71 228.65 229.47 229.48 229.48 9 322.37 324.54 322.31 322.30 324.39 324.41 324.41 10 471.56 476.01 472.07 472.02 476.62 476.66 476.66 表 3 算例结果相对偏差
Table 3. Relative Variation for Each Calculating Case
算例 相对偏差/% 一阶单元相对二阶
单元有限元结果正方形圆孔结构相
对多孔板有限元结果圆环结构相对正方
形圆孔结构有限元结果式(2)相对圆环
结构有限元结果式(2)相对多孔
板有限元结果多孔板 正方形圆孔结构 圆环结构 一阶单元 二阶单元 一阶单元 二阶单元 一阶单元 二阶单元 一阶单元 二阶单元 1 2.2 0.3 −1.0 −2.2 −0.4 1.6 2.9 0 −1.0 −0.6 1.5 2 −0.1 0 0 −0.4 −0.5 1.2 1.3 0 0 0.8 0.8 3 −0.3 0 0 −0.1 −0.4 0.3 0.3 0 0 0.2 0 4 −0.2 0 0 −0.2 −0.4 0 0 0 0 −0.2 −0.4 5 −0.1 0 0 −0.3 −0.4 0 0 0 0 −0.3 −0.4 6 0.1 0.1 0.1 −0.2 −0.2 0.3 0.3 0 0 0 0.1 7 0 0 0 −0.3 −0.3 0 0 0 0 −0.3 −0.3 8 −0.5 0 0 −0.1 −0.6 0.3 0.4 0 0 0.2 −0.2 9 −0.7 0 0 0 −0.7 0.6 0.7 0 0 0.6 0 10 −0.9 0 0 0.1 −0.8 1.0 1.0 0 0 1.1 0.1 注:A相对B的偏差=(A−B)/B×100% -
[1] 李浩,李燕,何培峰,等. 华龙一号堆内构件设计方法研究[J]. 核动力工程,2022, 43(S2): 182-188. [2] 束德林. 工程材料力学性能[M]. 第二版. 北京: 机械工业出版社,2007: 177. [3] 梁昆淼. 数学物理方法[M]. 第四版. 北京: 高等教育出版社,2010: 143-178, 263-302. [4] 凌备备,杨延洲. 核反应堆工程原理[M]. 北京: 原子能出版社,1982: 219. [5] 刘玉坤,邢立国. 基于TensorFlow的线性回归模拟及Python实现[J]. 现代计算机,2018(29): 92-94. doi: 10.3969/j.issn.1007-1423.2018.29.020 [6] 陈豪,吴健. 基于神经网络的正弦波函数拟合实现研究[J]. 现代信息科技,2019, 3(21): 4-6. doi: 10.3969/j.issn.2096-4706.2019.21.003