高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LOCUST软件再淹没模型验证与不确定性研究

许荣栓 夏航 徐财红 贺东钰 王婷 厉井钢

许荣栓, 夏航, 徐财红, 贺东钰, 王婷, 厉井钢. LOCUST软件再淹没模型验证与不确定性研究[J]. 核动力工程, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111
引用本文: 许荣栓, 夏航, 徐财红, 贺东钰, 王婷, 厉井钢. LOCUST软件再淹没模型验证与不确定性研究[J]. 核动力工程, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111
Xu Rongshuan, Xia Hang, Xu Caihong, He Dongyu, Wang Ting, Li Jinggang. Verification and Uncertainty Evaluation of LOCUST Reflood Model[J]. Nuclear Power Engineering, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111
Citation: Xu Rongshuan, Xia Hang, Xu Caihong, He Dongyu, Wang Ting, Li Jinggang. Verification and Uncertainty Evaluation of LOCUST Reflood Model[J]. Nuclear Power Engineering, 2024, 45(4): 111-117. doi: 10.13832/j.jnpe.2024.04.0111

LOCUST软件再淹没模型验证与不确定性研究

doi: 10.13832/j.jnpe.2024.04.0111
详细信息
    通讯作者:

    许荣栓(1992—),男,工程师,博士研究生,现主要从事反应堆热工水力软件研究,E-mail: xupoil@qq.com

  • 中图分类号: TL364

Verification and Uncertainty Evaluation of LOCUST Reflood Model

  • 摘要: 再淹没阶段是压水堆发生大破口失水事故(LBLOCA)后的重要阶段,为了评估系统软件LOCUST对该阶段的模拟能力,开展了LOCUST软件再淹没模型验证与不确定性研究工作。基于RBHT实验台架实验结果对LOCUST软件再淹没模型进行了验证;同时采用响应曲面法对再淹没模型开展了不确定性分析,将壁面-液膜沸腾换热系数、壁面-汽膜沸腾换热系数和界面摩擦系数作为输入参数,采用响应曲面法获得了RBHT实验台架实验段3个高度下加热棒表面最高温度的响应函数。验证计算结果与实验结果总体趋势符合良好,最高温度偏差在40 K以内。基于响应曲面法计算结果可知,95%的概率和95%的置信度下加热棒表面3个高度的最高温度最大偏差在20 K左右;当3个输入参数无量纲因子分别为1.951、1.233、0.1条件下,3个高度的最高温度计算值与实验值基本一致。

     

  • 图  1  RBHT实验台架实验段[10]

    Figure  1.  Test Section of RBHT Facility

    图  2  RBHT加热棒束截面视图[10]

    Figure  2.  Cross Section View of RBHT Heating Rod Bundle

    图  3  RBHT节点图

    TDJ—时间相关接管

    Figure  3.  Nodalization of RBHT

    图  4  加热棒轴向功率分布[10]

    P—当地功率;Pavg—平均功率

    Figure  4.  Axial Power Distribution of Heating Rod

    图  5  不同轴向高度处加热棒表面温度变化

    Figure  5.  Surface Temperature Change of Heating Rod at Different Axial Heights

    图  6  不同轴向高度处加热棒表面温度频数直方图

    Figure  6.  Histogram of Heating Rod Surface Temperature Distribution at Different Axial Heights

    图  7  不同轴向高度处加热棒表面温度概率密度函数

    Figure  7.  Probability Density Function of Surface Temperature of Heating Rod at Different Axial Heights

    图  8  不同轴向高度处加热棒表面温度累积分布函数

    Figure  8.  Cumulative Distribution Function of Surface Temperature of Heating Rod at Different Axial Heights

    表  1  注入流量与功率变化

    Table  1.   Variation of Injection Flow and Power

    时间/s 注入流量/(kg·s−1) 功率/W
    0 0 0
    0.5 0.06 71919
    1 0.125 143838
    1062 0.125 143838
    1062.5 0.06 71919
    1063 0 0
    下载: 导出CSV

    表  2  不同轴向高度处加热棒表面最高温度实验结果与LOCUST计算结果对比

    Table  2.   Comparison of Maximum Heating Rod Surface Temperature at Different Axial Heights between Experimental Data and LOCUST Calculation Results

    z/m 加热棒表面最高温度/K 偏差/K
    计算值 实验值
    1.40 874.48 901.70 27.22
    2.37 1025.93 1061.30 35.37
    2.93 1024.25 1032.40 8.15
    下载: 导出CSV

    表  3  不同轴向高度处骤冷时间实验结果与LOCUST结果对比     

    Table  3.   Comparison of Quench Time at Different Axial Heights between Experimental Data and LOCUST Results

    z/m 骤冷时间/s 偏差/s
    计算值 实验值
    1.40 280 311.5 31.5
    2.37 644 695.2 41.2
    2.93 1010 925.8 84.2
    下载: 导出CSV

    表  4  不同轴向高度处加热棒表面最高温度实验结果与RSM结果对比

    Table  4.   Comparison of Maximum Heating Rod Surface Temperature at Different Axial Heights between Experimental Data and RSM Results

    z/m 加热棒表面最高温度/K 温度偏差/K
    RSM LOCUST
    1.40 874.48 874.48 0
    2.37 1027.03 1025.93 1.1
    2.93 1028.90 1024.25 4.65
    下载: 导出CSV
  • [1] 李冬,刘晓晶,杨燕华. RELAP5程序再淹没现象物理模型的敏感性分析[J]. 核动力工程,2014, 35(S1): 166-169.
    [2] 阮神辉,杨继涛,文青龙,等. 基于RBHT再淹没传热试验的RELAP5/MOD4再淹没计算模型验证研究[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会论文集. 惠州: 2019: 119-129.
    [3] 李雪琳,张昊,杨燕华. COSINE程序再淹没模型验证及参数敏感性分析[J]. 核动力工程,2022, 43(6): 73-78.
    [4] 吕莉. 基于RELAP5程序的再淹没膜态沸腾传热模型研究[D]. 衡阳: 南华大学,2015.
    [5] SKOREK T, DE CRÉCY A, KOVTONYUK A, et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes – PREMIUM benchmark[J]. Nuclear Engineering and Design, 2019, 354: 110199. doi: 10.1016/j.nucengdes.2019.110199
    [6] XIONG Q W, DU P, DENG J, et al. Uncertainty evaluation of the ARSAC reflood model with Bayesian calibration[J]. Progress in Nuclear Energy, 2022, 143: 104055. doi: 10.1016/j.pnucene.2021.104055
    [7] 徐财红. 两相流热工水力系统分析软件LOCUST-1.2开发概述[C]//中国核学会核反应堆热工流体力学分会第一届学术年会暨中核核反应堆热工水力技术重点实验室2021年学术年会暨国家能源压水反应堆技术研发(实验)中心学术交流会. 重庆: 中国核学会核反应堆热工流体力学分会,中核核反应堆热工水力技术重点实验室与国家能源压水反应堆技术研发(实验)中心,2021.
    [8] HOCHREITER L E, CHEUNG F B, LIN T F, et al. Rod bundle heat transfer test facility test plan and design: NUREG/CR-6975[R]. Washington: U. S. Nuclear Regulatory Commission, 2010.
    [9] ROSAL E R, LIN T F, MCCLELLAN I S, et al. Rod bundle heat transfer test facility description: NUREG/CR-6976[R]. Washington: U. S. Nuclear Regulatory Commission, 2010.
    [10] HOCHREITER L E, CHEUNG F B, LIN T F, et al. RBHT reflood heat transfer experiments data and analysis: NUREG/CR-6980[R]. Washington: U. S. Nuclear Regulatory Commission, 2012.
    [11] WANG M J, QIU S Z, SU G H, et al. Preliminary study of parameter uncertainty influence on Pressurized Water Reactor core design[J]. Progress in Nuclear Energy, 2013, 68: 200-209. doi: 10.1016/j.pnucene.2013.07.002
    [12] WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96. doi: 10.1214/aoms/1177731788
    [13] HASSAN Y A, FU C. RELAP5/MOD3.2 analysis of a VVER-1000 reactor with UO2 fuel and mixed-oxide fuel[J]. Nuclear Technology, 2004, 148(3): 325-334. doi: 10.13182/NT04-A3570
    [14] REVENTÓS F, DE ALFONSO E, SANZ R M, et al. PREMIUM: a benchmark on the quantification of the uncertainty of the physical models in system thermal-hydraulic codes: methodologies and data review: NEA/CSNI/R(2016)9[R]. OECD/NEA, 2016.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  566
  • HTML全文浏览量:  12
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-10-10
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回