Experimental Study of the Influences of CRUD layer on Bubble Departure Diameter and Bubble Departure Frequency on Fuel Cladding Surface
-
摘要: 燃料包壳在压水堆运行中会形成表面沉积,其对包壳沸腾传热行为的影响机理尚不清楚。为探究包壳表面沉积层对气泡脱离直径和气泡脱离频率的影响规律,本研究基于常压下的流动沸腾可视化实验台架,采用包壳材料Zr-4合金为基板,对其进行逐层沉积得到不同厚度的SiO2沉积层来模拟燃料包壳表面沉积。通过开展流动沸腾实验对气泡脱离直径和气泡脱离频率进行气泡动力学分析,关注其与壁面过热度的变化规律,并与现有预测模型进行对比。研究发现:相比没有SiO2沉积层的表面,有SiO2沉积层的表面气泡脱离直径和气泡脱离频率更大,同时壁面过热度的增高会引起气泡脱离直径变大并加快气泡脱离壁面,在相同条件下工质过冷度和雷诺数对于气泡脱离频率的影响比气泡脱离直径更大;提出了符合本实验所有工况条件下改进的气泡脱离直径预测公式,改进后的预测计算式预测值与实验值的误差小于30%。Abstract: Chalk River Unidentified Deposits (CRUD) is naturally formed on the fuel cladding during the routine operation of pressurized water reactor (PWR), and its influence mechanism on the boiling heat transfer behavior of cladding is still unclear. In order to investigate the influence of CRUD on the bubble departure diameter (BDD) and bubble departure frequency (BDF), based on the flow boiling visualization experimental platform under atmospheric pressure, the cladding material Zr-4 alloy is used as the substrate, and SiO2 deposition layers with different thicknesses are deposited layer by layer to simulate the CRUD. The bubble dynamics analysis of BDD and BDF is carried out through the flow boiling experiment, with their relationship with the wall superheat considered, and compared with the existing prediction model. It is found that compared with the surface without SiO2 deposit, the BDD and BDF on the surface with SiO2 deposit are larger, and the increase of wall superheat will cause the BDD to become larger and accelerate the bubble departure. Under the same conditions, the influence of fluid subcooling and Reynolds number on the BDF is greater than that on the BDD. The improved prediction equations of BDD for all conditions in this experiment are put forward. The error between the predicted value of the improved prediction equations and the experimental value is less than 30%.
-
表 1 流动沸腾实验工况参数
Table 1. Condition Parameters for Flow Boiling Experiment
Tsub/K v/(m·s−1) Re δ/μm 3 0.12 9300 0 1 3 0.17 13000 0 1 3 5 0.12 9300 0 1 3 0.17 13000 0 1 3 Re—雷诺数,后文不同Re代表不同流速 -
[1] ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. doi: 10.1016/j.actamat.2012.11.004 [2] LI S Z, LIU X J. Development of boron tracking and boron hideout (CRUD) model based on subchannel approach[J]. Nuclear Engineering and Design, 2018, 338: 166-175. doi: 10.1016/j.nucengdes.2018.08.023 [3] SHORT M P. The particulate nature of the crud source term in light water reactors[J]. Journal of Nuclear Materials, 2018, 509: 478-481. doi: 10.1016/j.jnucmat.2018.07.008 [4] 邓日宁,蔡杰进. SiO2逐层沉积模拟燃料包壳表面沉积层的流动沸腾实验研究[J]. 原子能科学技术,2023, 57(10): 1910-1917. doi: 10.7538/yzk.2022.youxian.0891 [5] DENG R N, KAI M D, CAI J J. Subchannel thermal hydraulic analysis of 5×5 rod bundle with CRUD layer[J]. Nuclear Engineering and Design, 2023, 410: 112381. doi: 10.1016/j.nucengdes.2023.112381 [6] THORNCROFT E, KLAUSNERA J F, MEI R. An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 3857-3871. doi: 10.1016/S0017-9310(98)00092-1 [7] CHU I C, NO H C, SONG C H. Bubble lift-off diameter and nucleation frequency in vertical subcooled boiling flow[J]. Journal of Nuclear Science and Technology, 2011, 48(6): 936-949. doi: 10.1080/18811248.2011.9711780 [8] GUAN P, JIA L, YIN L F, et al. Bubble departure size in flow boiling[J]. Heat and Mass Transfer, 2015, 51(7): 921-930. doi: 10.1007/s00231-014-1461-7 [9] LI Y J, REN S, ZHANG S W, et al. Bubble characteristics in subcooled flow boiling of seawater[J]. Chemical Engineering Journal, 2022, 430: 132019. doi: 10.1016/j.cej.2021.132019 [10] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nature Methods, 2021, 18(1): 100-106. doi: 10.1038/s41592-020-01018-x [11] KLINE S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1963, 75: 3-8. [12] FRITZ W. Berechnung des maximalvolumes von dampfblasen[J]. Physik Zeitschr, 1935, 36: 379-384. [13] COLE R, ROHSENOW W M. Correlation of bubble departure diameters for boiling of saturated liquids[J]. Chemical Engineering Progress, 1969, 65(92): 211-213. [14] WENZEL U. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure[D]. Auckland: The University of Auckland, 1992. [15] PHAN H T, CANEY N, MARTY P, et al. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling[J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 964-969. doi: 10.1016/j.icheatmasstransfer.2010.06.024 [16] NAM Y, AKTINOL E, DHIR V K, et al. Single bubble dynamics on a superhydrophilic surface with artificial nucleation sites[J]. International Journal of Heat and Mass Transfer, 2011, 54(7-8): 1572-1577. doi: 10.1016/j.ijheatmasstransfer.2010.11.031 [17] KIM J, KIM M H. On the departure behaviors of bubble at nucleate pool boiling[J]. International Journal of Multiphase Flow, 2006, 32(10-11): 1269-1286. doi: 10.1016/j.ijmultiphaseflow.2006.06.010 [18] ALAVI FAZEL S A, SHAFAEE S B. Bubble dynamics for nucleate pool boiling of electrolyte solutions[J]. Journal of Heat Transfer, 2010, 132(8): 081502. doi: 10.1115/1.4001315 [19] KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6): 501-509. doi: 10.1016/0735-1933(83)90057-X