高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料包壳表面沉积层对气泡脱离直径与气泡脱离频率影响的实验研究

蔡杰进 胡致平 邓日宁

蔡杰进, 胡致平, 邓日宁. 燃料包壳表面沉积层对气泡脱离直径与气泡脱离频率影响的实验研究[J]. 核动力工程, 2024, 45(4): 118-126. doi: 10.13832/j.jnpe.2024.04.0118
引用本文: 蔡杰进, 胡致平, 邓日宁. 燃料包壳表面沉积层对气泡脱离直径与气泡脱离频率影响的实验研究[J]. 核动力工程, 2024, 45(4): 118-126. doi: 10.13832/j.jnpe.2024.04.0118
Cai Jiejin, Hu Zhiping, Deng Rining. Experimental Study of the Influences of CRUD layer on Bubble Departure Diameter and Bubble Departure Frequency on Fuel Cladding Surface[J]. Nuclear Power Engineering, 2024, 45(4): 118-126. doi: 10.13832/j.jnpe.2024.04.0118
Citation: Cai Jiejin, Hu Zhiping, Deng Rining. Experimental Study of the Influences of CRUD layer on Bubble Departure Diameter and Bubble Departure Frequency on Fuel Cladding Surface[J]. Nuclear Power Engineering, 2024, 45(4): 118-126. doi: 10.13832/j.jnpe.2024.04.0118

燃料包壳表面沉积层对气泡脱离直径与气泡脱离频率影响的实验研究

doi: 10.13832/j.jnpe.2024.04.0118
基金项目: 国家自然科学基金面上项目(12275088);广东省基础与应用基础研究基金资助项目(2021A1515010340)
详细信息
    作者简介:

    蔡杰进(1977—),男,博士研究生,教授,博士研究生导师,现主要从事核反应堆热工水力分析研究,E-mail: epjjcai@scut.edu.cn

    通讯作者:

    邓日宁,E-mail: 570757672@qq.com

  • 中图分类号: TL331

Experimental Study of the Influences of CRUD layer on Bubble Departure Diameter and Bubble Departure Frequency on Fuel Cladding Surface

  • 摘要: 燃料包壳在压水堆运行中会形成表面沉积,其对包壳沸腾传热行为的影响机理尚不清楚。为探究包壳表面沉积层对气泡脱离直径和气泡脱离频率的影响规律,本研究基于常压下的流动沸腾可视化实验台架,采用包壳材料Zr-4合金为基板,对其进行逐层沉积得到不同厚度的SiO2沉积层来模拟燃料包壳表面沉积。通过开展流动沸腾实验对气泡脱离直径和气泡脱离频率进行气泡动力学分析,关注其与壁面过热度的变化规律,并与现有预测模型进行对比。研究发现:相比没有SiO2沉积层的表面,有SiO2沉积层的表面气泡脱离直径和气泡脱离频率更大,同时壁面过热度的增高会引起气泡脱离直径变大并加快气泡脱离壁面,在相同条件下工质过冷度和雷诺数对于气泡脱离频率的影响比气泡脱离直径更大;提出了符合本实验所有工况条件下改进的气泡脱离直径预测公式,改进后的预测计算式预测值与实验值的误差小于30%。

     

  • 图  1  流动沸腾实验回路示意图

    T—温度传感器;P—压力传感器

    Figure  1.  Schematic Diagram of Flow Boiling Experiment Loop

    图  2  气泡图像识别处理示意图

    Figure  2.  Diagram of Bubble Image Recognition Processing

    图  3  气泡脱离直径与气泡脱离频率处理示意图

    Figure  3.  Diagram of BDD and BDF Processing

    图  4  不同雷诺数和过冷度下不同沉积厚度表面气泡脱离频率和气泡脱离直径曲线

    Figure  4.  BDF and BDD Curves of Different Deposition Thickness under Different Reynolds Number and Subcooling

    图  5  相同过冷度和雷诺数下不同沉积厚度表面的气泡脱离频率曲线与气泡脱离直径曲线

    Figure  5.  BDF and BDD Curves of Different Deposition Thickness under Same Reynolds Number and Subcooling

    图  6  不同工质过冷度下不同沉积厚度表面气泡脱离频率曲线与气泡脱离直径曲线

    Figure  6.  BDF and BDD Curves of Different Deposition Thickness under Different Fluid Subcooling

    图  7  不同沉积厚度表面Dd,expDd,cal对比

    Figure  7.  Comparison of Dd,exp and Dd,cal for Different Deposition Thicknesses

    图  8  改进后的预测计算式Dd,calDd,exp对比

    Figure  8.  Comparison of Predicted Values Dd,cal with Experimental Values Dd,exp Using Improved Prediction Equation

    表  1  流动沸腾实验工况参数

    Table  1.   Condition Parameters for Flow Boiling Experiment

    Tsub/K v/(m·s−1) Re δ/μm
    3 0.12 9300 0
    1
    3
    0.17 13000 0
    1
    3
    5 0.12 9300 0
    1
    3
    0.17 13000 0
    1
    3
      Re—雷诺数,后文不同Re代表不同流速
    下载: 导出CSV
  • [1] ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. doi: 10.1016/j.actamat.2012.11.004
    [2] LI S Z, LIU X J. Development of boron tracking and boron hideout (CRUD) model based on subchannel approach[J]. Nuclear Engineering and Design, 2018, 338: 166-175. doi: 10.1016/j.nucengdes.2018.08.023
    [3] SHORT M P. The particulate nature of the crud source term in light water reactors[J]. Journal of Nuclear Materials, 2018, 509: 478-481. doi: 10.1016/j.jnucmat.2018.07.008
    [4] 邓日宁,蔡杰进. SiO2逐层沉积模拟燃料包壳表面沉积层的流动沸腾实验研究[J]. 原子能科学技术,2023, 57(10): 1910-1917. doi: 10.7538/yzk.2022.youxian.0891
    [5] DENG R N, KAI M D, CAI J J. Subchannel thermal hydraulic analysis of 5×5 rod bundle with CRUD layer[J]. Nuclear Engineering and Design, 2023, 410: 112381. doi: 10.1016/j.nucengdes.2023.112381
    [6] THORNCROFT E, KLAUSNERA J F, MEI R. An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling[J]. International Journal of Heat and Mass Transfer, 1998, 41(23): 3857-3871. doi: 10.1016/S0017-9310(98)00092-1
    [7] CHU I C, NO H C, SONG C H. Bubble lift-off diameter and nucleation frequency in vertical subcooled boiling flow[J]. Journal of Nuclear Science and Technology, 2011, 48(6): 936-949. doi: 10.1080/18811248.2011.9711780
    [8] GUAN P, JIA L, YIN L F, et al. Bubble departure size in flow boiling[J]. Heat and Mass Transfer, 2015, 51(7): 921-930. doi: 10.1007/s00231-014-1461-7
    [9] LI Y J, REN S, ZHANG S W, et al. Bubble characteristics in subcooled flow boiling of seawater[J]. Chemical Engineering Journal, 2022, 430: 132019. doi: 10.1016/j.cej.2021.132019
    [10] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nature Methods, 2021, 18(1): 100-106. doi: 10.1038/s41592-020-01018-x
    [11] KLINE S J. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1963, 75: 3-8.
    [12] FRITZ W. Berechnung des maximalvolumes von dampfblasen[J]. Physik Zeitschr, 1935, 36: 379-384.
    [13] COLE R, ROHSENOW W M. Correlation of bubble departure diameters for boiling of saturated liquids[J]. Chemical Engineering Progress, 1969, 65(92): 211-213.
    [14] WENZEL U. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure[D]. Auckland: The University of Auckland, 1992.
    [15] PHAN H T, CANEY N, MARTY P, et al. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling[J]. International Communications in Heat and Mass Transfer, 2010, 37(8): 964-969. doi: 10.1016/j.icheatmasstransfer.2010.06.024
    [16] NAM Y, AKTINOL E, DHIR V K, et al. Single bubble dynamics on a superhydrophilic surface with artificial nucleation sites[J]. International Journal of Heat and Mass Transfer, 2011, 54(7-8): 1572-1577. doi: 10.1016/j.ijheatmasstransfer.2010.11.031
    [17] KIM J, KIM M H. On the departure behaviors of bubble at nucleate pool boiling[J]. International Journal of Multiphase Flow, 2006, 32(10-11): 1269-1286. doi: 10.1016/j.ijmultiphaseflow.2006.06.010
    [18] ALAVI FAZEL S A, SHAFAEE S B. Bubble dynamics for nucleate pool boiling of electrolyte solutions[J]. Journal of Heat Transfer, 2010, 132(8): 081502. doi: 10.1115/1.4001315
    [19] KOCAMUSTAFAOGULLARI G. Pressure dependence of bubble departure diameter for water[J]. International Communications in Heat and Mass Transfer, 1983, 10(6): 501-509. doi: 10.1016/0735-1933(83)90057-X
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  18
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2024-04-09
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回