高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于COSINE软件包子通道软件的换热模型和氧化关系式适应性研究

程以炫 孟召灿 张昊 章艺林 赵萌 杨燕华

程以炫, 孟召灿, 张昊, 章艺林, 赵萌, 杨燕华. 基于COSINE软件包子通道软件的换热模型和氧化关系式适应性研究[J]. 核动力工程, 2024, 45(4): 127-133. doi: 10.13832/j.jnpe.2024.04.0127
引用本文: 程以炫, 孟召灿, 张昊, 章艺林, 赵萌, 杨燕华. 基于COSINE软件包子通道软件的换热模型和氧化关系式适应性研究[J]. 核动力工程, 2024, 45(4): 127-133. doi: 10.13832/j.jnpe.2024.04.0127
Cheng Yixuan, Meng Zhaocan, Zhang Hao, Zhang Yilin, Zhao Meng, Yang Yanhua. Study on Adaptability of Heat Transfer Model and Oxidation Relationships Based on COSINE Sub-channel Code[J]. Nuclear Power Engineering, 2024, 45(4): 127-133. doi: 10.13832/j.jnpe.2024.04.0127
Citation: Cheng Yixuan, Meng Zhaocan, Zhang Hao, Zhang Yilin, Zhao Meng, Yang Yanhua. Study on Adaptability of Heat Transfer Model and Oxidation Relationships Based on COSINE Sub-channel Code[J]. Nuclear Power Engineering, 2024, 45(4): 127-133. doi: 10.13832/j.jnpe.2024.04.0127

基于COSINE软件包子通道软件的换热模型和氧化关系式适应性研究

doi: 10.13832/j.jnpe.2024.04.0127
基金项目: 国防科工局核能开发项目
详细信息
    作者简介:

    程以炫(1995—),男,博士研究生,现主要从事核电软件开发与测试方面的研究,E-mail: cyx1995@sjtu.edu.cn

  • 中图分类号: TL333

Study on Adaptability of Heat Transfer Model and Oxidation Relationships Based on COSINE Sub-channel Code

  • 摘要: 针对压水堆核电子通道软件中换热模型和氧化关系式对提高堆芯安全性和国产化软件模拟预测准确性的急迫需求,采用数值模拟技术在COSINE软件包子通道软件中分析换热模型和氧化关系式,并运用实验数据研究了不同理论关系式对沸腾换热性能和氧化量的影响。结果表明,该软件具有模拟棒束内临界前后换热模型的能力,其模拟结果和实验值吻合良好。在过热度小于4 K前, MAX模型计算核态沸腾适用性较好;在过热度大于4 K后, PLUS模型适用性较好。Dougall-Rohsenow模型计算膜态沸腾适用性较好。Baker-Juster模型在温度低于1374 K前,略微高估氧化量;在温度高于1374 K后,低估氧化量。

     

  • 图  1  热流密度和壁面过热度的关系比较

    Figure  1.  Comparison of Relationship between Wall Heat Flux and Super Heat

    图  2  采用不同核态沸腾模型的数值模拟结果误差

    Figure  2.  Numerical Simulation Errors Using Different Nucleate Boiling Models

    图  3  THTF实验数据与不同膜态沸腾关系式比较

    Figure  3.  Comparison of THTF Experimental Data with Different Film Boiling Models

    图  4  采用不同膜态沸腾模型的数值模拟结果误差

    Figure  4.  Numerical Simulation Errors Using Different Film Boiling Models

    图  5  较低温度工况下氧化层厚度分布

    Figure  5.  Oxide Layer Thickness Distribution at Lower Temperature

    图  6  较高温度工况下氧化层厚度分布

    Figure  6.  Oxide Layer Thickness Distribution at Higher Temperature

    图  7  氧化量的数值模拟误差

    Figure  7.  Numerical Simulation Errors of Oxidation Amount

    表  1  理论模型工况实验范围

    Table  1.   Experimental Range of Theoretical Model Conditions

    模型名称适用范围
    Jens-Lottes模型 p处于0.7~17.2 MPa,q小于12.5 MW/m2
    Dittus-Boelter模型 流体被加热和冷却,普朗特数(Pr)指数分别为0.4和0.3
    Thom模型 p处于5.2~13.8 MPa,q处于0.28~0.6 MW/m2
    Groenveld模型 p处于3.45~21.37 MPa,含汽率(X)为0.1~ 0.9
    Groenveld-Delorme模型 p处于0.69~21.37 MPa,X为0.12~0.31
    Dougall-Rohsenow模型 p处于0.11~0.16 MPa,X为0.4
    Baker-Juster模型 温度(T)处于1000~1300℃
    下载: 导出CSV
  • [1] 于平安,朱瑞安,喻真烷,等. 核反应堆热工分析[M]. 上海: 上海交通大学出版社,2002: 48-60.
    [2] BROMLEY L A. Heat transfer in stable film boiling[J]. Chemical Engineering Progress, 1950, 46(5): 221-226.
    [3] 刘彦章,邱军,刘欣,等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程,2010, 31(2): 85-88.
    [4] DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. University of California Publications in Engineering, 1930, 2: 443-461.
    [5] ONG’IRO A, UGURSAL V I, AL TAWEEL A M, et al. Modeling of heat recovery steam generator performance[J]. Applied Thermal Engineering, 1997, 17(5): 427-446. doi: 10.1016/S1359-4311(96)00052-X
    [6] JENS W H, LOTTES P A. Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water: ANL-4672[R]. Argonne: Argonne National Laboratory, 1951.
    [7] GROENEVELD D C, MOECK E O. An investigation of heat transfer in the liquid deficient regime: AECL-3281[R]. Chalk River: Chalk River Nuclear Labs, 1969.
    [8] GROENEVELD D C, DELORME G G J. Prediction of thermal non-equilibrium in the post-dryout regime[J]. Nuclear Engineering and Design, 1976, 36(1): 17-26. doi: 10.1016/0029-5493(76)90138-2
    [9] DOUGALL R L, ROHSENOW W M. Film-boiling on the inside of vertical tubes with upward flow of the fluid at low qualities[D]. Cambridge: Doctoral dissertation, Massachusetts Institute of Technology, 1973.
    [10] MARTÍN-CALLIZO C, PALM B, OWHAIB W. Subcooled flow boiling of R-134a in vertical channels of small diameter[J]. International Journal of Multiphase Flow, 2007, 33(8): 822-832. doi: 10.1016/j.ijmultiphaseflow.2007.02.002
    [11] TONG L S, YOUNG J D. Phenomenological transition and film boiling heat transfer correlation[C]// International Heat Transfer Conference. Tokyo, 1974.
    [12] EBRAHIM S A. An experimental investigation of the effects of surface conditions on pool-boiling heat transfer for various materials[D]. State College: The Pennsylvania State University, 2018.
    [13] 李智. 天然气发动机气缸盖热负荷及冷却水腔内沸腾传热研究[D]. 武汉: 华中科技大学,2012.
    [14] 傅松. 缸盖冷却水套内沸腾传热特性的研究[D]. 济南: 山东大学,2010.
    [15] CATHCART J V, PAWEL R E, MCKEE R A, et al. Zirconium metal-water oxidation kinetics: IV reaction rate studies: ORNL/NUREG-17[R]. Oak Ridge: Oak Ridge National Laboratory, 1977.
    [16] HU X G, DONG C, WANG Q, et al. High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings[J]. Journal of Nuclear Materials, 2019, 519: 145-156. doi: 10.1016/j.jnucmat.2019.01.039
    [17] YEOM H, MAIER B, JOHNSON G, et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments[J]. Journal of Nuclear Materials, 2019, 526: 151737. doi: 10.1016/j.jnucmat.2019.151737
    [18] 葛炜,杨燕华,刘飒,等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源,2016, 38(7): 39-44.
    [19] 傅孝良,刘丽芳,于楠,等. COSINE系统分析程序模型评估需求分析[J]. 核动力工程,2015, 36(1): 144-147.
    [20] ROHSENOW W M, CLARK J A. Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures: NP-3385[R]. Cambridge, Mass.: MIT Division of Industrial Cooperation, 1951.
    [21] YODER G L, MORRIS D G, MULLINS C B, et al. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR]: NUREG/CR-2435[R]. Oak Ridge: Oak Ridge National Laboratory, 1982. DOI: 10.2172/5425380.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  11
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2024-01-10
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回