Study on Adaptability of Heat Transfer Model and Oxidation Relationships Based on COSINE Sub-channel Code
-
摘要: 针对压水堆核电子通道软件中换热模型和氧化关系式对提高堆芯安全性和国产化软件模拟预测准确性的急迫需求,采用数值模拟技术在COSINE软件包子通道软件中分析换热模型和氧化关系式,并运用实验数据研究了不同理论关系式对沸腾换热性能和氧化量的影响。结果表明,该软件具有模拟棒束内临界前后换热模型的能力,其模拟结果和实验值吻合良好。在过热度小于4 K前, MAX模型计算核态沸腾适用性较好;在过热度大于4 K后, PLUS模型适用性较好。Dougall-Rohsenow模型计算膜态沸腾适用性较好。Baker-Juster模型在温度低于1374 K前,略微高估氧化量;在温度高于1374 K后,低估氧化量。Abstract: In view of the urgent need of heat transfer model and oxidation relationships in pressurized water reactor nuclear subchannel software to improve the core safety and the accuracy of simulation and prediction of domestic software, we used numerical simulation technology to analyze the heat transfer model and oxidation relationships in COSINE subchannel software, and used experimental data to study the influence of different theoretical relationships on boiling heat transfer performance and oxidation amount. The results indicate that the software has the ability to simulate the heat transfer before and after the criticality in the rod bundle, and the simulation results are in good agreement with the experimental values. Before the superheat degree is less than 4 K, the MAX model is suitable for calculating nucleate boiling. When the superheat degree is greater than 4 K, the PLUS model has good applicability. Dougall-Rohsenow model is suitable for calculating film boiling. Baker-Juster model slightly overestimated the oxidation amount before the temperature was lower than 1374 K; When the temperature is higher than 1374 K, the oxidation amount is underestimated.
-
Key words:
- Subchannel /
- COSINE software package /
- Wall heat transfer /
- Oxidation amount /
- Adaptability
-
表 1 理论模型工况实验范围
Table 1. Experimental Range of Theoretical Model Conditions
模型名称 适用范围 Jens-Lottes模型 p处于0.7~17.2 MPa,q小于12.5 MW/m2 Dittus-Boelter模型 流体被加热和冷却,普朗特数(Pr)指数分别为0.4和0.3 Thom模型 p处于5.2~13.8 MPa,q处于0.28~0.6 MW/m2 Groenveld模型 p处于3.45~21.37 MPa,含汽率(X)为0.1~ 0.9 Groenveld-Delorme模型 p处于0.69~21.37 MPa,X为0.12~0.31 Dougall-Rohsenow模型 p处于0.11~0.16 MPa,X为0.4 Baker-Juster模型 温度(T)处于1000~1300℃ -
[1] 于平安,朱瑞安,喻真烷,等. 核反应堆热工分析[M]. 上海: 上海交通大学出版社,2002: 48-60. [2] BROMLEY L A. Heat transfer in stable film boiling[J]. Chemical Engineering Progress, 1950, 46(5): 221-226. [3] 刘彦章,邱军,刘欣,等. N18锆合金在600~1200℃蒸汽中的氧化行为研究[J]. 核动力工程,2010, 31(2): 85-88. [4] DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. University of California Publications in Engineering, 1930, 2: 443-461. [5] ONG’IRO A, UGURSAL V I, AL TAWEEL A M, et al. Modeling of heat recovery steam generator performance[J]. Applied Thermal Engineering, 1997, 17(5): 427-446. doi: 10.1016/S1359-4311(96)00052-X [6] JENS W H, LOTTES P A. Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water: ANL-4672[R]. Argonne: Argonne National Laboratory, 1951. [7] GROENEVELD D C, MOECK E O. An investigation of heat transfer in the liquid deficient regime: AECL-3281[R]. Chalk River: Chalk River Nuclear Labs, 1969. [8] GROENEVELD D C, DELORME G G J. Prediction of thermal non-equilibrium in the post-dryout regime[J]. Nuclear Engineering and Design, 1976, 36(1): 17-26. doi: 10.1016/0029-5493(76)90138-2 [9] DOUGALL R L, ROHSENOW W M. Film-boiling on the inside of vertical tubes with upward flow of the fluid at low qualities[D]. Cambridge: Doctoral dissertation, Massachusetts Institute of Technology, 1973. [10] MARTÍN-CALLIZO C, PALM B, OWHAIB W. Subcooled flow boiling of R-134a in vertical channels of small diameter[J]. International Journal of Multiphase Flow, 2007, 33(8): 822-832. doi: 10.1016/j.ijmultiphaseflow.2007.02.002 [11] TONG L S, YOUNG J D. Phenomenological transition and film boiling heat transfer correlation[C]// International Heat Transfer Conference. Tokyo, 1974. [12] EBRAHIM S A. An experimental investigation of the effects of surface conditions on pool-boiling heat transfer for various materials[D]. State College: The Pennsylvania State University, 2018. [13] 李智. 天然气发动机气缸盖热负荷及冷却水腔内沸腾传热研究[D]. 武汉: 华中科技大学,2012. [14] 傅松. 缸盖冷却水套内沸腾传热特性的研究[D]. 济南: 山东大学,2010. [15] CATHCART J V, PAWEL R E, MCKEE R A, et al. Zirconium metal-water oxidation kinetics: IV reaction rate studies: ORNL/NUREG-17[R]. Oak Ridge: Oak Ridge National Laboratory, 1977. [16] HU X G, DONG C, WANG Q, et al. High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings[J]. Journal of Nuclear Materials, 2019, 519: 145-156. doi: 10.1016/j.jnucmat.2019.01.039 [17] YEOM H, MAIER B, JOHNSON G, et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments[J]. Journal of Nuclear Materials, 2019, 526: 151737. doi: 10.1016/j.jnucmat.2019.151737 [18] 葛炜,杨燕华,刘飒,等. 大型先进压水堆核电站关键设计软件自主化与COSINE软件包研发[J]. 中国能源,2016, 38(7): 39-44. [19] 傅孝良,刘丽芳,于楠,等. COSINE系统分析程序模型评估需求分析[J]. 核动力工程,2015, 36(1): 144-147. [20] ROHSENOW W M, CLARK J A. Heat transfer and pressure drop data for high heat flux densities to water at high subcritical pressures: NP-3385[R]. Cambridge, Mass.: MIT Division of Industrial Cooperation, 1951. [21] YODER G L, MORRIS D G, MULLINS C B, et al. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR]: NUREG/CR-2435[R]. Oak Ridge: Oak Ridge National Laboratory, 1982. DOI: 10.2172/5425380.