[1] |
苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 26-27.
|
[2] |
STAUB D W. SNAP Programs: summary report: AI-AEC-13067[R]. Canoga Park: North American Aviation, Inc., 1973: 701.
|
[3] |
H. E. 古哈尔金,H. H. 波诺马廖夫-斯捷普诺伊,B. A. 乌索夫. 热电转换和热离子转换式空间核反应堆电源“罗马什卡”和“叶尼塞”[M]. 刘舒,张玲,宋琛玮,译. 北京: 中国原子能出版社,2016: 5-7.
|
[4] |
STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 31.
|
[5] |
HATSOPOULOS G N, GYFTOPOULOS E P. Thermionic energy conversion, volume Ⅰ: processes and devices[M]. Cambridge: The MIT Press, 1973: 5-12.
|
[6] |
STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna: International Atomic Energy Agency, 2005: 29-30.
|
[7] |
VOSS S S. TOPAZ II system description: No. LA-UR-94-4[R]. Los Alamos: Los Alamos National Lab. , 1994.
|
[8] |
钟武烨,赵守智,郑剑平,等. 空间热离子能量转换技术发展综述[J]. 深空探测学报,2020, 7(1): 47-60.
|
[9] |
HUFFMAN F. Thermionic energy conversion[M]//MEYERS R A. Encyclopedia of Physical Science and Technology. 3rd ed. San Diego: Academic Press, 2003: 627-638.
|
[10] |
RASOR N S. Thermionic energy conversion plasmas[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1191-1208. doi: 10.1109/27.125041
|
[11] |
杨继材,柯国土,郑剑平,等. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社,2017: 147-149.
|
[12] |
RASOR N S. Methods for improving thermionic converter performance[C]//Proceedings of the 3rd international Conference on Thermionic Electrical Power Generation. Juelich: International Atomic Energy Agency, 1972.
|
[13] |
王秀锋. 几种典型金属材料的弹性性能与电子功函数的关联[D]. 湘潭: 湘潭大学,2011: 29.
|
[14] |
SAMSTAD G I, DANKO J C, LEVIN H A. Performance of cylindrical converter with deep etched tungsten emitter[C]//Proceedings of the IEEE Conference Record of 1970 Thermionic Conversion Specialist Conference. New York: IEEE, 1970.
|
[15] |
Б. А. 乌沙考夫. 热离子能量转换器的理论基础[Z]. 李耀鑫,译. 北京: 中国原子能科学研究院,1999: 34-37.
|
[16] |
PARAMONOV D V, EL-GENK M S. Effect of oxygen on performance and mass transport in a single-cell thermionic fuel element[C]//Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington: IEEE, 1996.
|
[17] |
DAVIS P R, SCHWIND G A. Low work function emitter electrodes for advanced thermionic converters[J]. Applied Surface Science, 1986, 25(4): 355-363. doi: 10.1016/0169-4332(86)90080-2
|
[18] |
GUBBELS G H M, WOLFF L R, METSELAAR R. Electron emission microscope measurements on cermet electrodes for thermionic converters[J]. Solid State Ionics, 1985, 16: 47-54. doi: 10.1016/0167-2738(85)90023-2
|
[19] |
CHOU S H, VOSS J, BARGATIN I, et al. An orbital-overlap model for minimal work functions of cesiated metal surfaces[J]. Journal of Physics:Condensed Matter, 2012, 24(44): 445007. doi: 10.1088/0953-8984/24/44/445007
|
[20] |
KRONIK L, SHAPIRA Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 37(1-5): 1-206. doi: 10.1016/S0167-5729(99)00002-3
|
[21] |
SCHINDLER P, RILEY D C, BARGATIN I, et al. Surface photovoltage-induced ultralow work function material for thermionic energy converters[J]. ACS Energy Letters, 2019, 4(10): 2436-2443. doi: 10.1021/acsenergylett.9b01214
|
[22] |
KOECK F A M, WANG Y Y, NEMANICH R J. Thermionic converters based on nanostructured carbon materials[J]. AIP Conference Proceedings, 2006, 813(1): 607-613.
|
[23] |
WANG Y Y, TANG G Y, KOECK F A M, et al. Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures[J]. Diamond and Related Materials, 2004, 13(4-8): 1287-1291. doi: 10.1016/j.diamond.2004.01.009
|
[24] |
WESTOVER T L, FRANKLIN A D, COLA B A, et al. Photo-and thermionic emission from potassium-intercalated carbon nanotube arrays[J]. Journal of Vacuum Science & Technology B, 2010, 28(2): 423-434.
|
[25] |
MICHEL J A, ROBINSON V S, YANG L, et al. Synthesis and characterization of potassium metal/graphitic carbon nanofiber intercalates[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(4): 1942-1950. doi: 10.1166/jnn.2008.18260
|
[26] |
LIANG S J, ANG L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1): 014002. doi: 10.1103/PhysRevApplied.3.014002
|
[27] |
ZHU F, LIN X Y, LIU P, et al. Heating graphene to incandescence and the measurement of its work function by the thermionic emission method[J]. Nano Research, 2014, 7(4): 553-560. doi: 10.1007/s12274-014-0423-1
|
[28] |
GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metal contacts[J]. Physical Review Letters, 2008, 101(2): 026803. doi: 10.1103/PhysRevLett.101.026803
|
[29] |
KHOSHAMAN A H, FAN H D E, KOCH A T, et al. Thermionics, thermoelectrics, and nanotechnology: new possibilities for old ideas[J]. IEEE Nanotechnology Magazine, 2014, 8(2): 4-15. doi: 10.1109/MNANO.2014.2313172
|
[30] |
KÖCK F A M, GARGUILO J M, NEMANICH R J. Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films[J]. Diamond and Related Materials, 2005, 14(3-7): 704-708. doi: 10.1016/j.diamond.2004.12.056
|
[31] |
SMITH J R, NEMANICH R J, BILBRO G L. The effect of Schottky barrier lowering and nonplanar emitter geometry on the performance of a thermionic energy converter[J]. Diamond and Related Materials, 2006, 15(4-8): 870-874. doi: 10.1016/j.diamond.2005.12.057
|
[32] |
KOECK F A M, NEMANICH R J, BALASUBRAMANIAM Y, et al. Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure[J]. Diamond and Related Materials, 2011, 20(8): 1229-1233. doi: 10.1016/j.diamond.2011.06.032
|
[33] |
NEMANIČ V, ŽUMER M, KOVAČ J, et al. In situ reactivation of low-temperature thermionic electron emission from nitrogen doped diamond films by hydrogen exposure[J]. Diamond and Related Materials, 2014, 50: 151-156. doi: 10.1016/j.diamond.2014.10.003
|
[34] |
PARAMONOV D V, EL-GENK M S. A review of cesium thermionic converters with developed emitter surfaces[J]. Energy Conversion and Management, 1997, 38(6): 533-549. doi: 10.1016/S0196-8904(96)00067-2
|
[35] |
赵广播,侴爱辉. 热离子能量转换器发射极与接收极的材料与结构[J]. 中国科技论文在线,2006.
|
[36] |
LEE C, LEIB D, MISKOLCZY G. Performance of thermionic converters with structured emitters and collectors[C]//Proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Reno: IEEE, 1990.
|
[37] |
EL-GENK M S, LUKE J R. Performance comparison of thermionic converters with smooth and macro-grooved electrodes[J]. Energy Conversion and Management, 1999, 40(3): 319-334. doi: 10.1016/S0196-8904(98)00049-1
|
[38] |
SIDELNIKOV V N. On the Electron-from-Metals work function[J]. Surface Roentgen and Neutron Research, 2000(8): 42-44.
|
[39] |
SIDEL’NIKOV V N. Nonmonotonic potential barrier for electrons inside an adsorbed layer on the collector of a thermionic converter[J]. Atomic Energy, 2000, 89(1): 574-577. doi: 10.1007/BF02673517
|
[40] |
GERASHCHENKO S S, GUSEVA M I, KORYUKIN V A, et al. Investigation of the characteristics of thermionic converters with a Mo (110) single-crystal collector with Ion-implanted oxygen[J]. Atomic Energy, 1994, 76(2): 147-149. doi: 10.1007/BF02414361
|
[41] |
YARYGIN V, SIDELNIKOV V, MIRONOV V. Energy conversion options for NASA's space nuclear power systems initiative-underestimated capability of thermionics[C]//Proceedings of the 2nd International Energy Conversion Engineering Conference. Providence: AIAA, 2004.
|
[42] |
YARYGIN D V, MIRONOV V S, SOLOV’EV N P, et al. High-output thermionic converter based on a metal-oxygen system on the collector[J]. Atomic Energy, 2000, 89(1): 546-554. doi: 10.1007/BF02673514
|
[43] |
HOLMLID L, SVENSSON R. Collector for thermionic energy converter covered with carbon like material and having a low electronic work function: US, 5578886[P]. 1996-11-26.
|
[44] |
YARYGIN V I. Experimental studies of properties of excited states of cesium (Rydberg Matter) in the interelectrode plasma of a low-temperature thermal to electric energy thermionic converter[J]. Journal of Cluster Science, 2012, 23(1): 77-93. doi: 10.1007/s10876-012-0443-5
|
[45] |
KHALID K A A, LEONG T J, MOHAMED K. Review on thermionic energy converters[J]. IEEE Transactions on Electron Devices, 2016, 63(6): 2231-2241. doi: 10.1109/TED.2016.2556751
|
[46] |
CAMPBELL M F, AZADI M, LU Z P, et al. Nanostructured spacers for thermionic and thermophotovoltaic energy converters[J]. Journal of Microelectromechanical Systems, 2020, 29(5): 637-644. doi: 10.1109/JMEMS.2020.3000422
|
[47] |
NICAISE S M, LIN C, AZADI M, et al. Micron-gap spacers with ultrahigh thermal resistance and mechanical robustness for direct energy conversion[J]. Microsystems & Nanoengineering, 2019, 5(1): 31.
|