Research on Dynamic Modeling and Control Method of Heat Pipe Reactor
-
摘要: 为了开展热管堆的核功率控制方法研究,本文建立了MegaPower热管堆的轻量化动态模型,并基于此对设计的控制器进行了仿真验证。基于集总参数方法,研究了堆芯到热管再到换热器的传热模型,并建立了Simulink仿真模型。针对热管堆的控制方法,首先确定了以负荷跟踪和换热器出口温度不变为控制目标,然后设计了并联比例-积分-微分(PID)和串级PID两种控制器,并对比分析了两者的控制效果。结果表明:模型方面,模型的稳态误差不超过0.05%,其在无控制情况下的参数响应趋势与理论分析一致,且仿真速度较快;控制方面,2种控制器均能够达成控制目标,核功率和换热器出口温度的调节时间小于150 s,且波动幅值较小。因此,本文建立的热管堆的动态模型可以用于热管堆控制方法的仿真验证,基于PID设计的两种控制器具有较好的控制效果,且串级PID控制器的控制性能更好。
-
关键词:
- 热管堆 /
- 动态模型 /
- 负荷跟踪 /
- 温度控制 /
- 比例-积分-微分(PID)控制
Abstract: In order to study the nuclear power control method of heat pipe reactor (HPR), the lightweight dynamic model of MegaPower HPR is constructed, and then the designed controller is verified by simulation. Based on lumped parameter method, a heat transfer model from core to heat pipe and then to heat exchanger is studied, and Simulink model is established. Aiming at the control method design of HPR, the control objectives of load tracking and keeping the heat exchanger outlet temperature constant are determined. Then, two controllers, the parallel proportional-integral-derivative (PID) and the cascade PID, are designed, and their control effects are compared and analyzed. The results show that the steady-state error of the model is less than 0.05%, and the parameter response trend of the model without control is consistent with the theoretical analysis, and the simulation speed is faster. In terms of control, the two controllers can achieve the control objectives, and the adjustment time of nuclear power and heat exchanger outlet temperature is less than 150 s with small fluctuation amplitude. Therefore, the dynamic model of HPR established in this paper can be used to verify the control method, and the two controllers based on PID design have great control effect, and the cascade PID controller has better control performance.-
Key words:
- Heat pipe reactor /
- Dynamic model /
- Load tracking /
- Temperature control /
- PID control
-
表 1 热管堆动态模型在100%FP初始条件下的稳态误差
Table 1. The Steady-state Error of Dynamic Model of HPR under 100%FP Initial Condition
参数名 设计值 动态模型的计算值 相对误差/% 相对功率 1 0.9998 −0.02 燃料平均温度/K 988.75 988.70 −0.01 基体平均温度/K 959.19 959.10 −0.01 热管平均温度/K 952.99 952.50 −0.05 换热器出口温度/K 820.00 819.19 −0.01 -
[1] SUBKI M H. Advances in technology developments of small modular reactors–including microreactors[C]//21st INPRO Dialogue Forum on the Deployment of SMR Projects and Technologies to Support the Sustainable Development Goals. Sankt Petersburg, Russian: International Atomic Energy Agency, 2023. [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001. [3] 钟睿诚,马誉高,邓坚,等. 热管堆多反馈效应下的启堆特性研究[J]. 核动力工程,2021, 42(S2): 104-108. doi: 10.13832/j.jnpe.2021.S2.0104. [4] 邹正平,王一帆,姚李超,等. 超临界二氧化碳闭式布莱顿循环系统研究进展[J]. 北京航空航天大学学报,2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196. [5] MARCHIONNI M, BIANCHI G, TASSOU S A. Transient analysis and control of a heat to power conversion unit based on a simple regenerative supercritical CO2 Joule-Brayton cycle[J]. Applied Thermal Engineering, 2021, 183: 116214. doi: 10.1016/j.applthermaleng.2020.116214 [6] 柴晓明,马誉高,韩文斌,等. 热管堆固态堆芯三维核热力耦合方法与分析[J]. 原子能科学技术,2021, 55(S2): 189-195. [7] GUO Y C, LI Z G, WANG K, et al. A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors[J]. Science China Technological Sciences, 2022, 65(1): 102-114. [8] MCCLURE P R, POSTON D I, DASARI V R, et al. Design of megawatt power level heat pipe reactors: LA-UR-15-28840[R]. Los Alamos: Los Alamos National Laboratory, 2015. [9] 马誉高,杨小燕,刘余,等. MW级热管冷却反应堆反馈特性及启堆过程研究[J]. 原子能科学技术,2021, 55(S2): 213-220. [10] GE L, LI H Q, TIAN X Y, et al. Improvement and validation of the system analysis model and code for heat-pipe-cooled microreactor[J]. Energies, 2022, 15(7): 2586. doi: 10.3390/en15072586 [11] ZUO Z J, FAGHRI A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. doi: 10.1016/S0017-9310(97)00220-2 [12] MA Y G, CHEN E H, YU H X, et al. Heat pipe failure accident analysis in megawatt heat pipe cooled reactor[J]. Annals of Nuclear Energy, 2020, 149: 107755. doi: 10.1016/j.anucene.2020.107755