Design and Multi-Objective Optimization Study of Liquid Lead-Supercritical Carbon Dioxide Heat Exchanger
-
摘要: 为提高铅冷快堆主换热器的综合换热性能,本研究建立了以液态铅和超临界二氧化碳(S-CO2)为工质的螺旋盘管式主换热器的热工水力模型,采用MATALB语言编写了设计程序,并利用非支配排序遗传算法(NSGA-II)开展了对主换热器的换热面积和综合性能评价因子的多目标优化设计。结果表明,本文建立的优化设计方法可以在提高主换热器综合性能的同时,有效降低其换热面积。在主换热器的设计中,应优先考虑管外径、螺旋管层数以及第一层螺旋管数,以达到减小换热面积、提高综合换热性能的目的。Abstract: In order to improve the comprehensive heat transfer performance of the primary heat exchanger in lead-cooled fast reactors, the present study established a thermal-hydraulic model for a spiral-coil primary heat exchanger using liquid lead and supercritical carbon dioxide (S-CO2) as working fluids. A design code was developed in MATLAB language, and a multi-objective optimization design was conducted on the heat transfer area and comprehensive performance evaluation factor of the primary heat exchanger by employing the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The results showed that the optimization design method proposed in this paper can effectively reduce the heat transfer area of the heat exchanger and improve its comprehensive performance. In the design of the primary heat exchanger, priority should be given to the outer diameter of tubes, the number of spiral tube layers and the number of spiral tubes in the first layer, so as to reduce the heat exchange area and improve the comprehensive heat exchange performance.
-
Key words:
- Lead-cooled fast reactor /
- Heat exchanger /
- Gene algorithm /
- Optimization design
-
表 1 液态铅物性关系式
Table 1. Formulas for the Physical Properties of Liquid Lead
物性 关系式 密度ρ/(kg·m−3) ρ=11367−1.1944T 粘度μ/(Pa·s) μ=4.55×10−4exp(1069/T) 热导率λ/(W·m−1·K−1) λ=9.2+0.011T 比热容cp/
(J·kg−1·K−1)cp=175.1−4.961×10−2T + 1.985×
10−5T 2−1.524×106T −2−2.099 × 10−9T 3表 2 主换热器运行条件
Table 2. Operating Conditions of the Primary Heat Exchange
运行参数 具体参数 换热功率/MW 12.5 壳侧进出口温度/℃ 600/450 管侧进出口温度/℃ 360/560 壳侧压力/MPa 0.1 管侧压力/MPa 20 S-CO2质量流量/(kg·s−1) 51.3 液态铅质量流量/(kg·s−1) 571 表 3 主换热器初步设计结果
Table 3. Preliminary Results of Primary Heat Exchanger
设计变量 设计值 换热管外径/mm 8 换热管内径/mm 6.6 径向节距/mm 10 轴向节距/mm 10 螺旋管层数 45 换热管数 1800 中心柱直径/mm 100 套筒内径/mm 1016 第一层螺旋管头数 18 平均螺旋上升角 14.3° 换热面积/m² 112.7 表 4 优化变量取值范围
Table 4. Variable Range for Optimization
变量 取值范围 换热管外径/mm 8≤do≤25 径向节径比(ST/do) 1.25≤(ST/do)≤1.6 轴向节径比(SL/do) 1.25≤(SL/do)≤1.6 第一层螺旋管头数(M0) 10≤M0≤20 螺旋管层数(N) 40≤N≤70 中心柱直径/mm 100≤Din≤500 -
[1] LU Y M, GUO Z P, GONG Y, et al. Optimal study of swordfish fin microchannel heat exchanger for the next generation nuclear power conversion system of lead-based reactor[J]. Annals of Nuclear Energy, 2022, 165: 108679. doi: 10.1016/j.anucene.2021.108679 [2] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625 [3] 沈秀中,于平安,杨修周,等. 铅冷快堆固有安全性的分析[J]. 核动力工程,2002, 23(4): 75-78. doi: 10.3969/j.issn.0258-0926.2002.04.019 [4] 黄彦平,刘旻昀,卓文彬,等. 超临界二氧化碳核能动力系统的兴起和发展[J]. 原子能科学技术,2023, 57(9): 1665-1680. doi: 10.7538/yzk.2023.youxian.0345 [5] 王桂梅,陈红丽. 铅基反应堆主换热器结构优化及热工水力分析[J]. 中国科学技术大学学报,2014, 44(12): 1007-1013. doi: 10.3969/j.issn.0253-2778.2014.12.008 [6] CHEN F, CAI J, LI X F, et al. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger[J]. Nuclear Engineering and Design, 2014, 274: 66-76. doi: 10.1016/j.nucengdes.2014.04.024 [7] 李晓伟,吴莘馨,张作义,等. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版),2021, 61(4): 329-337. [8] SUBKI H. Advances in small modular reactor technology developments[M]. Austria: International Atomic Energy Agency, 2020. [9] ALEMBERTI A, CARLSSON J, MALAMBU E, et al. European lead fast reactor—ELSY[J]. Nuclear Engineering and Design, 2011, 241(9): 3470-3480. doi: 10.1016/j.nucengdes.2011.03.029 [10] 杨宇鹏,王成龙,张大林,等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术,2021, 55(7): 1288-1295. doi: 10.7538/yzk.2020.youxian.0514 [11] 丁雪友,陈志强,文青龙,等. 铅铋快堆螺旋管直流蒸汽发生器热工水力特性数值研究[J]. 核动力工程,2021, 42(4): 21-26. [12] 岳清雯,赖喜德,陈小明,等. 水平螺旋管式换热器的流热耦合传热特性研究[J]. 热能动力工程,2021, 36(4): 118-125. [13] 王翠华,李光瑜,苏方正,等. 螺旋套管换热器壳程流体湍流换热热力性能数值研究[J]. 过程工程学报,2022, 22(7): 935-943. doi: 10.12034/j.issn.1009-606X.221209 [14] WEN J, YANG H Z, TONG X, et al. Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm[J]. International Journal of Thermal Sciences, 2016, 101: 116-125. doi: 10.1016/j.ijthermalsci.2015.10.024 [15] ZAREA H, KASHKOOLI F M, MEHRYAN A M, et al. Optimal design of plate-fin heat exchangers by a Bees Algorithm[J]. Applied Thermal Engineering, 2014, 69(1-2): 267-277. doi: 10.1016/j.applthermaleng.2013.11.042 [16] SADEGHZADEH H, EHYAEI M A, ROSEN M A. Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms[J]. Energy Conversion and Management, 2015, 93: 84-91. doi: 10.1016/j.enconman.2015.01.007 [17] KIRILLOV P L, USHAKOV P A. Heat transfer to liquid metals: specific features, methods of investigation, and main relationships[J]. Thermal Engineering, 2001, 48(1): 50-59. [18] 王淑香,张伟,牛志愿,等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报,2013, 64(11): 3917-3926. [19] 尹清辽,孙玉良,居怀明,等. 模块式高温气冷堆超临界蒸汽发生器设计[J]. 原子能科学技术,2006, 40(6): 707-713. doi: 10.3969/j.issn.1000-6931.2006.06.015 [20] ITŌ H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering, 1959, 81(2): 123-132. doi: 10.1115/1.4008390 [21] OECD/NEA Nuclear Science Committee Working Party on Scientific Issues of the Fuel Cycle Working Group on Lead-Bismuth Eutectic. 铅与铅铋共晶合金手册——性能、材料相容性、热工水力学和技术[M]. 戎利建,张玉妥,陆善平,等译. 北京: 科学出版社,2014: 88-91. [22] ZHANG J, KAPERNICK R J, MCCLURE P R, et al. Lead–bismuth eutectic technology for Hyperion reactor[J]. Journal of Nuclear Materials, 2013, 441(1-3): 644-649. doi: 10.1016/j.jnucmat.2013.04.079 [23] GILLI P V. Heat transfer and pressure drop for cross flow through banks of multistart helical tubes with uniform inclinations and uniform longitudinal pitches[J]. Nuclear Science and Engineering, 1965, 22(3): 298-314. doi: 10.13182/NSE65-A20934 [24] WANG G H, WANG D B, DENG J, et al. Experimental and numerical study on the heat transfer and flow characteristics in shell side of helically coiled tube heat exchanger based on multi-objective optimization[J]. International Journal of Heat and Mass Transfer, 2019, 137: 349-364. doi: 10.1016/j.ijheatmasstransfer.2019.03.137