Capacity Configuration and Operation Optimization of a Low-Temperature Reactor Nuclear Heating System with Heat Storage
-
摘要: 为了满足日益增长的低碳供热需求,同时提升供热系统的运行灵活性和经济效益,本文提出了一个集成“燕龙”池式低温供热堆(DHR-400)、储热水池、燃气锅炉的核能供热系统(DHGHS)。以辽源市某一集中供热区域作为DHGHS的应用场景,开展了以费用年值最小化为目标的设备容量配置与运行优化,并与DHR-400+储热水池、DHR-400+燃气锅炉、燃气锅炉、地源热泵等4种供热方案进行了对比分析。研究结果表明:额定容积为3.15×105 m3的储热水池和额定容量为82.79 MW的燃气锅炉可以实现DHGHS在整个供热期的灵活运行,DHR-400的功率调节次数仅有177次。DHGHS的最优费用年值为1.16×108 元,低于其他4种供热方案,最佳供热规模为1.18×107 m2。本文工作可为多热源DHGHS的设计及运行优化提供理论指导。Abstract: In order to meet the growing demand for low-carbon heating and improve the operational flexibility and economic benefits of the heating system, a nuclear heating system (DHGHS) integrating a "Yanlong" pool-type low-temperature heating reactor (DHR-400), a heat storage pool, and a gas boiler was proposed. A central heating region in Liaoyuan City was taken as the application scenario of DHGHS, the equipment capacity and operation optimization with the goal of minimizing the annual cost were carried out. A comparison between DHGHS and four heating schemes including DHR-400 and heat storage pool, DHR-400 and gas boiler, gas boiler, and ground source heat pump was conducted. The results show that the heat storage pool with a rated volume of 3.15×105 m3 and the gas boiler with a rated capacity of 82.79 MW can achieve the flexible operation of DHGHS throughout the heating period. The total number of power adjustments of DHR-400 in the whole heating period is only 177 times. The optimal annual cost of DHGHS is RMB 1.16×108, which is lower than the other four heating schemes. The optimal heating scale of DHGHS is 1.18×107 m2. The work in this paper can provide theoretical guidance for the design and operation optimization of the multi-heat source nuclear heating system.
-
Key words:
- Low-temperature heating reactor /
- Heat storage /
- Central heating /
- Capacity optimization /
- Annual cost
-
表 1 DHGHS各设备的性能参数
Table 1. Equipment Performance Parameters of DHGHS
设备 参数 数值 DHR-400 Qhr,r/MW 400 mt 16 ηhr 0.98 Bn/[MW·d·kg–1(U)] 30.5 储热水池 Qch,max/MW 400 Qdc,max/MW 687.98 σhsp 0.0002 ηch 0.99 ηdc 0.99 δth 0.06 ΔT/℃ 30 燃气锅炉 ηgb 0.9 qlhv/(kJ·m–3) 35530 表 2 DHGHS各设备的经济参数
Table 2. Equipment Economic Parameters of DHGHS
设备 参数 数值 DHR-400 chr/(元·MW–1) 3.0×106 cnf/[元·kg–1(U)] 13095 Fhr,ma 0.01 τhr/a 60 储热水池 chsp/(元·m–3) 200 Fhsp,ma 0.03 τhsp/a 30 燃气锅炉 cgb/(元·MW–1) 2.0×105 cng/(元·m–3) 2.45 Fgb,ma 0.03 τgb/a 30 表 3 DHGHS的最优容量配置
Table 3. Optimal Capacity Configuration of DHGHS
设备 参数 数值 储热水池 额定储热量(Hhsp,r)/(MW·h) 1.03×104 额定容积(Vhsp,r)/m3 3.15×105 燃气锅炉 额定功率(Qgb,r)/MW 82.79 表 4 供热方案对比
Table 4. Comparison of Heating Schemes
方案 初始投资成本/元 年运行和维护成本/元 费用年值/元 年二氧化碳排放量/t ① DHGHS 1.28×109 4.73×107 1.16×108 8.87×103 ② DHR-400+储热水池 1.53×109 4.48×107 1.30×108 0 ③ DHR-400+燃气锅炉 1.27×109 1.00×108 1.68×108 5.43×104 ④ 燃气锅炉 1.54×108 3.45×108 3.55×108 2.73×105 ⑤ 地源热泵 6.14×108 1.96×108 2.36×108 0 -
[1] 张佳思,周春. 我国清洁供热产业发展现状与趋势研究[J]. 中国能源,2022, 44(5): 40-46. [2] 王永福,孙玉良. 高温气冷堆热电联产技术经济研究[J]. 核动力工程,2016, 37(3): 181-184. [3] 梁卫红,解衡. 改进型低温供热堆二次侧非能动余热排出系统不稳定性分析[J]. 核动力工程,2018, 39(2): 14-19. [4] 郝文涛,张亚军. 低温供热堆研究进展[J]. 中国核电,2019, 12(5): 518-521. [5] 谢菲,李金才,解衡. 小型核供热堆负荷跟踪瞬态和反应性事故过程稳压特性及其稳定性研究[J]. 核动力工程,2016, 37(4): 142-147. [6] ALEKSANDR S,赵金玲,顾青青,等. 基于核能低温供热堆调节特性的基本热负荷确定方法研究[J]. 暖通空调,2023, 53(2): 108-114,126. [7] LIPKA M, RAJEWSKI A. Regress in nuclear district heating. The need for rethinking cogeneration[J]. Progress in Nuclear Energy, 2020, 130: 103518. doi: 10.1016/j.pnucene.2020.103518 [8] 陈华,向毅文. 核能供热新星——泳池式低温堆简介[J]. 区域供热,2018(1): 19-23. [9] 柯国土,刘兴民,郭春秋,等. 泳池式低温供热堆技术进展[J]. 原子能科学技术,2020, 54(S1): 206-212. [10] 朱珈辰,张亚东,杨笑,等. 池式低温供热堆快速供热启动方式仿真研究[J]. 节能技术,2021, 39(5): 448-451. [11] 张力玮,段天英,贾玉文. 400MW低温供热堆功率调节系统仿真研究[J]. 原子能科学技术,2018, 52(12): 2181-2187. [12] 胡彬和,刘兴民,孙征,等. 400MW泳池式低温供热堆堆芯核设计[J]. 核技术,2021, 44(10): 79-86. [13] 张乐,贾玉文,段天英,等. 低温堆供热控制研究[J]. 原子能科学技术,2023, 57(1): 165-174. [14] HEO J Y, PARK J H, CHAE Y J, et al. Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors[J]. Nuclear Engineering and Technology, 2021, 53(8): 2427-2444. doi: 10.1016/j.net.2021.02.023 [15] SAEED R M, FRICK K L, SHIGREKAR A, et al. Mapping thermal energy storage technologies with advanced nuclear reactors[J]. Energy Conversion and Management, 2022, 267: 115872. doi: 10.1016/j.enconman.2022.115872 [16] DENHOLM P, KING J C, KUTCHER C F, et al. Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage[J]. Energy Policy, 2012, 44: 301-311. doi: 10.1016/j.enpol.2012.01.055 [17] EDWARDS J, BINDRA H, SABHARWALL P. Exergy analysis of thermal energy storage options with nuclear power plants[J]. Annals of Nuclear Energy, 2016, 96: 104-111. doi: 10.1016/j.anucene.2016.06.005 [18] RÄMÄ M, LEURENT M, DE LAVERGNE J G D. Flexible nuclear co-generation plant combined with district heating and a large-scale heat storage[J]. Energy, 2020, 193: 116728. doi: 10.1016/j.energy.2019.116728 [19] HADI GHAZAIE S, SADEGHI K, CHEBAC R, et al. On the use of advanced nuclear cogeneration plant integrated into latent heat storage for district heating[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101838. doi: 10.1016/j.seta.2021.101838 [20] WANG J, ZHAO J, YE X L, et al. Safety constraints and optimal operation of large-scale nuclear power plant participating in peak load regulation of power system[J]. IET Generation, Transmission & Distribution, 2017, 11(13): 3332-3340. [21] TIAN J F. Economic feasibility of heat supply from simple and safe nuclear plants[J]. Annals of Nuclear Energy, 2001, 28(11): 1145-1150. doi: 10.1016/S0306-4549(00)00110-9 [22] BENALCAZAR P. Sizing and optimizing the operation of thermal energy storage units in combined heat and power plants: an integrated modeling approach[J]. Energy Conversion and Management, 2021, 242: 114255. doi: 10.1016/j.enconman.2021.114255 [23] XIE Z C, XIANG Y T, WANG D J, et al. Numerical investigations of long-term thermal performance of a large water pit heat storage[J]. Solar Energy, 2021, 224: 808-822. doi: 10.1016/j.solener.2021.06.027 [24] XIANG Y T, GAO M, FURBO S, et al. Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage[J]. Renewable Energy, 2023, 217: 119170. doi: 10.1016/j.renene.2023.119170 [25] LOCATELLI G, BOARIN S, PELLEGRINO F, et al. Load following with Small Modular Reactors (SMR): a real options analysis[J]. Energy, 2015, 80: 41-54. doi: 10.1016/j.energy.2014.11.040 [26] LIU Z J, FAN G Y, SUN D K, et al. A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings[J]. Energy, 2022, 239: 122577. doi: 10.1016/j.energy.2021.122577