高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸汽发生器沉积物在EDTA溶液中溶解行为

宋利君 肖艳 孙云 田朝晖 刘灿帅 邹伟

宋利君, 肖艳, 孙云, 田朝晖, 刘灿帅, 邹伟. 蒸汽发生器沉积物在EDTA溶液中溶解行为[J]. 核动力工程, 2024, 45(4): 228-234. doi: 10.13832/j.jnpe.2024.04.0228
引用本文: 宋利君, 肖艳, 孙云, 田朝晖, 刘灿帅, 邹伟. 蒸汽发生器沉积物在EDTA溶液中溶解行为[J]. 核动力工程, 2024, 45(4): 228-234. doi: 10.13832/j.jnpe.2024.04.0228
Song Lijun, Xiao Yan, Sun Yun, Tian Zhaohui, Liu Canshuai, Zou Wei. Dissolution Behavior of Steam Generator Deposit in EDTA Solution[J]. Nuclear Power Engineering, 2024, 45(4): 228-234. doi: 10.13832/j.jnpe.2024.04.0228
Citation: Song Lijun, Xiao Yan, Sun Yun, Tian Zhaohui, Liu Canshuai, Zou Wei. Dissolution Behavior of Steam Generator Deposit in EDTA Solution[J]. Nuclear Power Engineering, 2024, 45(4): 228-234. doi: 10.13832/j.jnpe.2024.04.0228

蒸汽发生器沉积物在EDTA溶液中溶解行为

doi: 10.13832/j.jnpe.2024.04.0228
详细信息
    作者简介:

    宋利君(1980—),女,工学博士,主要从事核电厂水化学控制与优化研究工作,E-mail: songlijun1980@163.com

  • 中图分类号: TL38

Dissolution Behavior of Steam Generator Deposit in EDTA Solution

  • 摘要: 为了研究化学清洗剂乙二胺四乙酸(EDTA)对模拟沉积物Fe3O4和蒸汽发生器(SG)泥渣的溶解能力,以指导化学清洗工艺选择,采用X射线荧光光谱和电感耦合等离子体发射光谱分析温度、EDTA浓度、溶解时间对模拟沉积物Fe3O4和SG泥渣的溶解效果。采用Fe3O4制备化学修饰电极,采用三电极体系开展修饰电极的循环伏安测试和交流阻抗测试。结果表明,溶液温度越高,EDTA浓度越高,对Fe3O4的溶解能力越强;溶解时间越长,模拟沉积物Fe3O4和SG泥渣的溶解率越高;由于SG泥渣和模拟沉积物Fe3O4的差异性,EDTA溶液对SG泥渣的溶解能力弱于模拟沉积物Fe3O4;修饰电极在EDTA溶液中的电化学反应过程属于扩散控制过程。

     

  • 图  1  模拟沉积物Fe3O4和SG泥渣的XRD图谱

    Figure  1.  XRD Patterns of Simulated Deposit Fe3O4 and SG Sludge

    图  2  模拟沉积物Fe3O4的微观形貌

    Figure  2.  Macroscopic Morphology of Simulated Deposit Fe3O4

    图  3  模拟沉积物在EDTA溶液中的溶解率

    Figure  3.  Dissolution Rate of Simulated Deposit in EDTA Solution

    图  4  SG泥渣在EDTA溶液中的溶解率

    Figure  4.  Dissolution Rate of SG Sludge in EDTA Solution

    图  5  SG泥渣在95℃的10% EDTA溶液中溶解前后微观形貌

    Figure  5.  Macroscopic Morphology of SG Sludge before and after Dissolution in 10% EDTA Solution at 95℃

    图  6  在95℃的10% EDTA溶液中溶解8 h后照片

    Figure  6.  Photos of Simulated Deposit and Sludge Dissolved in 10% EDTA Solution at 95℃ for 8 h

    图  7  修饰电极在15%EDTA溶液中的CV曲线和还原峰峰电流与扫速平方根的关系曲线图

    Figure  7.  CV Curves and Relationship Curve Between Reduction Peak Currents and Scan Rate Square Root of Modified Electrode in 15% EDTA Solution

    图  8  修饰电极在EDTA溶液中CV循环前后的EIS图

    Rs—工作电极与对电极之间的电解质溶液电阻,对应电阻值为Rs;C界面电容,对应电容值为C;Rp—极化电阻,对应电阻值为Rp;Rct—电荷转移电阻,对应电阻值为Rct;CPE1—恒相位元件电容,对应电容值为CPE1

    Figure  8.  EIS Diagram of Modified Electrode Before and After CV Cycling in EDTA Solution

    表  1  实验仪器

    Table  1.   Experimental Instruments

    仪器名称 型号
    XRD PANalytical X' PERT PRO
    SEM ZEISS Sigma 300
    XRF Bruke S2 PUMA
    ICP-OES SPECTRO ARCOS EOP
    电化学工作站 CHI 660E
    下载: 导出CSV

    表  2  SG泥渣的XRF分析结果

    Table  2.   XRF Analysis Results of SG Sludge

    元素 Fe Cr Mn Ti Ni Zn
    质量分数/% 94.91 0.79 0.69 0.54 0.52 0.33
    元素 Mg Cu Si Pb Cl Mo
    质量分数/% 0.76 0.27 0.61 0.26 0.11 0.05
      注:因XRF测量原理限制,原子序数在Na之前的元素无法检出
    下载: 导出CSV

    表  3  SG泥渣在10% EDTA溶液中溶解8 h后滤液中金属元素含量

    Table  3.   Metal Element Content in the Filtrate of SG Sludge Dissolved in 10% EDTA Solution for 8 h

    元素 Fe Cu Pb Zn Na
    浓度/(mg·kg−1) 3044.4 80.4 17.3 11.9 20.0
    元素 K Ca Mg Al
    浓度/(mg·kg−1) 35.5 3.0 0.4 35.0
    下载: 导出CSV

    表  4  修饰电极在EDTA溶液中CV循环前后的EIS拟合数据

    Table  4.   EIS Fitting Data of Modified Electrode Before and After CV Cycling in EDTA Solution

    测试条件 EDTA
    浓度/%
    Rs C/10−5F Rp CPE1/10−5 F Rct
    CV循环前 2 56.23 4.31 191.7 3.12 4308
    5 32.47 4.63 197.8 2.90 3696
    10 22.27 4.93 189.5 2.93 3228
    15 20.77 2.92 101.9 9.04 1740
    CV循环后 2 66.71 3.68 153.0 3.47 4501
    5 39.73 3.99 134.8 3.26 4474
    10 28.51 4.48 148.8 2.89 3433
    15 21.30 4.78 158.8 2.92 3589
    下载: 导出CSV
  • [1] WOLFE R. Steam generator management program: PWR steam generator deposit characterization sourcebook: 3002002794[R]. Palo Alto, California: Electric Power Research Institute, 2014.
    [2] CHOI S, FRUZZETTI K, CARAVAGGIO M, et al. Pressurized water reactor secondary side filming amine application: scoping assessment: 3002008187[R]. Palo Alto, California: Electric Power Research Institute, 2016.
    [3] FRUZZETTI K. Pressurized water reactor secondary water chemistry guidelines - revision 7: 1016555[R]. Palo Alto, California: Electric Power Research Institute, 2009.
    [4] FULLER E. Steam generator integrity assessment guidelines revision 2: 3002020909[R]. Palo Alto, California: Electric Power Research Institute, 2006.
    [5] MAGEE T P, HALL J F. Examination of Trojan steam generator tubes: EPRI-TR-101427-Vol. 1[R]. Palo Alto, California: Electric Power Research Institute, 1992.
    [6] FRUZZETTI K. Proceedings: 2002 workshop on pressurized water reactor elevated feedwater iron transport: EPRI-1003586[R]. Palo Alto, California: Electric Power Research Institute, 2002.
    [7] SAVELKOUL J, VAN LIER R. Operational experience with organics in industrial steam generation[J]. Power Plant Chemistry, 2005, 7(12): 733-739.
    [8] FRATTINI P. Effect of steam generator replacement on PWR primary corrosion product transport: 1003601[R]. Palo Alto, California: Electric Power Research Institute, 2002.
    [9] FRUZZETTI K, WOOD C J. Developments in nuclear power plant water chemistry[C]//International Conference on Water Chemistry of Nuclear Reactor Systems. 2006.
    [10] MILLER A D. PWR advanced amine application guidelines - revision 2: TR-102952-R2[R]. Palo Alto, California: Electric Power Research Institute, 1997.
    [11] SRIKANTIAH G. Steam generator thermal performance degradation case studies: TR-110018[R]. Palo Alto, California: Electric Power Research Institute, 1998.
    [12] SHOEMAKER C E. Hideout and return of chloride salts in heated crevices prototypic of support plates in steam generators: RP1171-3[R]. Palo Alto, California: Electric Power Research Institute, 1987.
    [13] TEN EYCK P. Filming corrosion inhibitor reduces corrosion product transport in power plant steam-water circuits[C]//USA: EPRI SGMP 2016 Steam Generator Secondary Side Management Conference. 2016.
    [14] BOTT T R. Fouling of heat exchangers[M]. Amsterdam, The Netherlands: Elsevier, 1995.
    [15] FELDMAN H, WOLFE R.Electric Power Research Institute. Steam generator management program: assessment of the effect of deposit removal frequency on sludge management[R]. Palo Alto, California: Electric Power Research Institute, 2012.
    [16] WOLFE R. Steam generator management program: steam generator deposit removal strategies sourcebook: TR-30020050902015[R]. Palo Alto, California: Electric Power Research Institute, 2015.
    [17] PRESTEGIACOMO J B, BAUM A J, SAGAR A, et al. Qualification of PWR steam generator chemical cleaning for Indian point-2: EPRI-NP-6356-M[R]. Palo Alto, California: Electric Power Research Institute, 1989.
    [18] 张孟琴,张树丰,于晶华,等. 压水堆核电厂蒸汽发生器二次侧化学清洗工艺中型试验研究[J]. 中国原子能科学研究院年报,1997(0): 96-97.
    [19] 王会仲,肖国林,刘匡时. 蒸汽发生器二次侧化学清洗工艺[J]. 核动力工程,1997, 18(4): 375-379.
    [20] 韩斌,李锋,王旭初. 一种用于核电站蒸汽发生器的俄罗斯化学清洗配方清洗效果的评价[J]. 腐蚀科学与防护技术,2013, 25(3): 259-261.
    [21] 夏小娇,温菊花,马韦刚,等. 田湾核电站冷停堆过程中蒸汽发生器二次侧化学清洗配方研究[J]. 核动力工程,2013, 34(3): 156-158. doi: 10.3969/j.issn.0258-0926.2013.03.037
    [22] DOW B L. Utility experience with steam generator chemical cleaning: EPRI TR-104553[R]. California: Electric Power Research Institute, 1994.
    [23] LITTLE M, WOLFE R, CAPELL B, et al. Updated experience with steam generator secondary side deposit management[C]//20th International Conference on Water Chemistry of Nuclear Reactor Systems. Brighton: Curran Associates, Inc. , 2016: 178-189.
    [24] LITTLE M, MCCREE A, VARRIN R, et al. Advanced scale conditioning agent (ASCA) applications. 2014 experience update[C]//Nuclear Plant Chemistry Conference. Tokyo: Atomic Energy Society of Japan, 2014.
    [25] 段志虹,田朝晖,宋利君,等. Fe3O4化学修饰电极的制备及其在抗坏血酸中的电化学研究[J]. 功能材料,2019, 50(6): 6139-6143,6149.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-09-21
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回