高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁铬铝骤冷过程最小膜态沸腾温度实验研究

王泽锋 邓坚 邱志方 陈曦 王啸宇 陈建达 熊进标

王泽锋, 邓坚, 邱志方, 陈曦, 王啸宇, 陈建达, 熊进标. 铁铬铝骤冷过程最小膜态沸腾温度实验研究[J]. 核动力工程, 2024, 45(4): 267-273. doi: 10.13832/j.jnpe.2024.04.0267
引用本文: 王泽锋, 邓坚, 邱志方, 陈曦, 王啸宇, 陈建达, 熊进标. 铁铬铝骤冷过程最小膜态沸腾温度实验研究[J]. 核动力工程, 2024, 45(4): 267-273. doi: 10.13832/j.jnpe.2024.04.0267
Wang Zefeng, Deng Jian, Qiu Zhifang, Chen Xi, Wang Xiaoyu, Chen Jianda, Xiong Jinbiao. Experimental Investigation on Minimum Film Boiling Temperature during Quenching of FeCrAl[J]. Nuclear Power Engineering, 2024, 45(4): 267-273. doi: 10.13832/j.jnpe.2024.04.0267
Citation: Wang Zefeng, Deng Jian, Qiu Zhifang, Chen Xi, Wang Xiaoyu, Chen Jianda, Xiong Jinbiao. Experimental Investigation on Minimum Film Boiling Temperature during Quenching of FeCrAl[J]. Nuclear Power Engineering, 2024, 45(4): 267-273. doi: 10.13832/j.jnpe.2024.04.0267

铁铬铝骤冷过程最小膜态沸腾温度实验研究

doi: 10.13832/j.jnpe.2024.04.0267
基金项目: 国家自然科学基金(12005216);四川省自然科学基金(2022NSFSC1253)
详细信息
    作者简介:

    王泽锋(1990—),男,博士研究生,现从事反应堆热工水力与安全分析工作,E-mail: wangzeff@126.com

  • 中图分类号: TL334

Experimental Investigation on Minimum Film Boiling Temperature during Quenching of FeCrAl

  • 摘要: 铁铬铝(FeCrAl)作为事故容错燃料(ATF)包壳的主要候选材料,能够抑制反应堆在严重事故下产氢释能的风险,提高反应堆的事故耐受能力。本文基于可视化方法研究了FeCrAl和Zr-4在骤冷过程中的沸腾传热行为。通过一维导热反问题求解计算FeCrAl的表面热流密度和温度,分析了表面氧化、固体热物性对铁铬铝骤冷行为的影响。研究结果表明随着过冷度的增大,骤冷时间减小,最小膜态沸腾温度增大;随着固体热物性(ρcp)w的增大,骤冷时间增大,最小膜态沸腾温度减小。由于铁铬铝优异的高温抗氧化性,其骤冷过程的沸腾传热行为受表面氧化的影响可忽略不计。

     

  • 图  1  骤冷实验系统

    Figure  1.  Quenching Experimental System

    图  2  FeCrAl和Zr-4的表面SEM照片

    Figure  2.  SEM Images of FeCrAl and Zr-4

    图  3  FeCrAl和Zr-4的表面接触角

    Figure  3.  Contact Angle of FeCrAl and Zr-4

    图  4  FeCrAl在不同过冷度水骤冷的可视化行为

    t0<t1<t2<t3

    Figure  4.  Visualization Results of Quenching Behavior of FeCrAl with Different Undercooling

    图  5  FeCrAl在10℃过冷度水中骤冷不同轴向高度的骤冷曲线和沸腾曲线

    Tsat—饱和温度;Tw—壁面温度

    Figure  5.  Quenching and Boiling Curves of FeCrAl at Different Axial Heights under 10℃ of Liquid Subcooling

    图  6  FeCrAl在10℃过冷度水中连续5次实验的骤冷曲线与沸腾曲线

    Figure  6.  Quenching and Boiling Curves of FeCrAl in Five Successive Experiments under 10℃ of Liquid Subcooling

    图  7  Zr-4在10℃过冷度水中连续5次实验的骤冷曲线与沸腾曲线

    Figure  7.  Quenching and Boiling Curves of Zr-4 in Five Successive Experiments under 10℃ of Liquid Subcooling

    图  8  FeCrAl和Zr-4实验结束后截面的SEM照片

    Figure  8.  SEM Images of Cross Section of FeCrA and Zr-4 after Experiment

    图  9  FeCrAl与Zr-4在不同过冷度水中的骤冷曲线与沸腾曲线

    Figure  9.  Comparison of the Quench and Boiling Curves between FeCrAl and Zircaloy-4

    图  10  FeCrAl与Zr-4在不同过冷度水中的骤冷速度

    Figure  10.  Comparison of the Quenching Speed between FeCrAl and Zr-4

    图  11  最小膜态沸腾温度计算值与实验值的对比

    Figure  11.  Comparison of the Minimum Film Boiling Temperature between the Predicted Values and Experimental Results

    表  1  FeCrAl和Zr-4的表面特性和热物性

    Table  1.   Surface Characteristics and Thermophysical Properties of FeCrAl and Zr-4

    包壳材料 密度ρ/
    (kg·m−3)
    热导率λ/
    (W·m−1·K−1)
    比热容cp/
    (J·kg−1·K−1)
    粗糙度/μm 接触角
    FeCrAl 7100 13 460 0.2 93.4˚
    Zr-4 6550 13.4 286 0.2 103.8˚
    下载: 导出CSV

    表  2  最小膜态沸腾温度与过冷度的线性关系式

    Table  2.   Linear Relationship between Minimum Film Boiling Temperature and Subcooling Degree

    关系式 形式 偏差
    $ {E}_{1} $ $ {E}_{2} $
    Dhir $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}}=8{\Delta T}_{\mathrm{s}\mathrm{u}\mathrm{b}}+201 $ 0.193 0.202
    Mori $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}}=6.4{\Delta T}_{\mathrm{s}\mathrm{u}\mathrm{b}}+253.2 $ 0.114 0.126
    Ebrahim $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}}=10.5{\Delta T}_{\mathrm{s}\mathrm{u}\mathrm{b}}+307 $ 0.176 0.196
    式(9) $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}}=8.6\Delta {T}_{\mathrm{s}\mathrm{u}\mathrm{b}}+274.4 $ 0.019 0.022
    式(10) $ {T}_{\mathrm{m}\mathrm{i}\mathrm{n}}=10.4\Delta {T}_{\mathrm{s}\mathrm{u}\mathrm{b}}+265.3 $ 0.012 0.014
    下载: 导出CSV
  • [1] KIM H, BUONGIORNO J, HU L W, et al. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids[J]. International Journal of Heat and Mass Transfer, 2010, 53(7-8): 1542-1553. doi: 10.1016/j.ijheatmasstransfer.2009.11.029
    [2] SINHA J. Effects of surface roughness, oxidation level, and liquid subcooling on the minimum film boiling temperature[J]. Experimental Heat Transfer, 2003, 16(1): 45-60. doi: 10.1080/08916150390126478
    [3] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [4] TERRANI K A, Accident tolerant fuel cladding development: Promise, status, and challenges[J]. Journal of Nuclear Materials, 2018, 501: 13-30.
    [5] KANG J Y, KIM S H, JO H, et al. Film boiling heat transfer on a completely wettable surface with atmospheric saturated distilled water quenching[J]. International Journal of Heat and Mass Transfer, 2016, 93: 67-74. doi: 10.1016/j.ijheatmasstransfer.2015.09.049
    [6] SESHADRI A, SHIRVAN K. Quenching heat transfer analysis of accident tolerant coated fuel cladding[J]. Nuclear Engineering and Design, 2018, 338: 5-15. doi: 10.1016/j.nucengdes.2018.07.020
    [7] 王泽锋,邓坚,王嘉庚,等. 锆-4在冷却水中的骤冷沸腾传热实验研究[J]. 核动力工程,2021, 42(1): 186-191.
    [8] BECK J V, BLACKWELL B, CLAIR JR C R S. Inverse heat conduction: Ill-posed problems[M]. New York: Wiley, 1985.
    [9] DUFFEY R B, PORTHOUSE D T C. The physics of rewetting in water reactor emergency core cooling[J]. Nuclear Engineering and Design, 1973, 25(3): 379-394. doi: 10.1016/0029-5493(73)90033-2
    [10] DHIR V K, PUROHIT G P. Subcooled film-boiling heat transfer from spheres[J]. Nuclear Engineering and Design, 1978, 47(1): 49-66. doi: 10.1016/0029-5493(78)90004-3
    [11] MORI M, TODA S, OCHIAI M A, et al. Transient cooling process of fuel rod in reactivity initiated accident[J]. Journal of Nuclear Science and Technology, 1980, 17(6): 413-424. doi: 10.1080/18811248.1980.9732605
    [12] EBRAHIM S A, CHANG S, CHEUNG F B, et al. Parametric investigation of film boiling heat transfer on the quenching of vertical rods in water pool[J]. Applied Thermal Engineering, 2018, 140: 139-146. doi: 10.1016/j.applthermaleng.2018.05.021
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  34
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-11-20
  • 刊出日期:  2024-08-12

目录

    /

    返回文章
    返回