Anti-Noise Coding Research for Next-Generation Nuclear Power DCS Communication System
-
摘要: 在核电厂无线线路改造或下一代分布式控制系统(DCS)设计时引入无线信号的过程中,需通过纠错码提升无线通信质量。本文针对已编码无线信号核电厂仪控设备周边环境的通信性能进行研究,首先阐述了核电厂无线通信信号面临的问题,其次建立了仪控设备周边通信信道模型,并通过蒙特卡洛仿真的方法分析5G增强移动带宽(5GeMMB)场景下低密度奇偶校验码(LDPC)编码的性能,最后通过设备研制与现场实验进一步验证仿真分析结果。研究结果表明, 5GeMMB场景下LDPC编码在DCS无线通信环境中的适用性不足,需进一步改进通信设计以提升无线通信在核电厂仪控设备的可用程度。本研究可为核电厂生产系统引入无线信号提供一定的设计参考。
-
关键词:
- 5G /
- 分布式控制系统(DCS) /
- 低密度奇偶校验码(LDPC)
Abstract: In the process of introducing wireless signals in the rupgrading of wireless circuits in nuclear power plants or the design of the next generation distributed control system (DCS), it is necessary to improve the quality of wireless communication through error-correcting codes. This paper investigates the communication performance of encoded wireless signals in the vicinity of nuclear power plant instrumentation and control devices. Firstly, the problems faced by wireless communication signals in nuclear power plant are expounded. Secondly, the communication channel model around instrument and control devices is established, and the performance of low-density parity-check code (LDPC) coding in 5G enhanced mobile bandwidth (5GeMMB) scenario is analyzed by Monte Carlo simulation. Finally, the simulation analysis results are further verified through equipment development and field experiments. The research results show that the applicability of LDPC coding in DCS wireless communication environment in 5GeMMB scenario is insufficient, and the communication design needs to be further improved to enhance the availability of wireless communication in instrument and control devices of nuclear power plant. This study can provide some design reference for introducing wireless signals into the production system of nuclear power plants.-
Key words:
- 5G /
- Distributed control system (DCS) /
- Low-density parity-check (LDPC)
-
表 1 基图选择标准
Table 1. BG Selection Criteria
表 2 5G核电点对点通信设备部分设计指标
Table 2. Some Design Indicators for Nuclear Power 5G Point-to-Point Communication Equipment
最大速率/(Mb·s−1) 15 编码方式 数据信道QC-LDPC 调制方式 16QAM、QPSK 发射功率/ W 5 工作频段/GHz 1~2 表 3 5G通信方案现场实验结果
Table 3. Experimental Results of On-site 5G Communication Scheme Testing
序号 测试场景 时长/s 平均速率/
(Mb·s−1)丢包率/% 1 房间B内 0.5301 11.755 <0.01 2 房间B至房间A外 320 10.979 2.42 3 房间B至房间A内 331 5.178 35.24 4 房间B至楼下 337 11.711 <0.01 5 房间B至室外 100 6 机房过铁门至房间B(开机) 4.3 10.947 2.40 7 机房至房间B(开机) 3.6 11.521 0.63 -
[1] 刘景宾,乔宁,郭银辉,等. 核电站5G和无线通信技术电磁兼容应用的研究[J]. 核科学与工程,2021, 41(5): 1067-1074. [2] 吴银伟,郭璇,孙琦毓. 核电厂无线通信网络电磁兼容性研究[J]. 电气应用,2021, 40(3): 29-34. [3] 丁云,龙振海,邵拓. 无线通信系统在核电厂中的应用及工程实践[J]. 中国电子科学研究院学报,2021, 16(3): 290-296. [4] 徐博雅. 无线技术在核电厂的应用研究[J]. 仪器仪表用户,2021, 28(3): 54-56. doi: 10.3969/j.issn.1671-1041.2021.03.013 [5] 张琳娜,吴银伟. 核电厂无线通信网络应用现状和发展方向[J]. 电气应用,2020, 39(8): 32-36. [6] 孟佳,邓晓飞,魏巍. 核电厂5G无线通信系统的网络安全研究[J]. 仪器仪表用户,2021, 28(12): 41-45. doi: 10.3969/j.issn.1671-1041.2021.12.009 [7] 江江. 浅谈核电站无线网络的网络安全技术防护与对策[J]. 数字通信世界,2020(1): 61-62. doi: 10.3969/J.ISSN.1672-7274.2020.01.036