Evaluation of Boundary Lubrication Status for Nuclear Coolant Pump Thrust Bearings
-
摘要: 润滑状态对轴承磨损影响很大。本文提出一种根据比压-边界润滑转速(P-ω)函数曲线判断核电厂反应堆冷却剂泵(简称核主泵)推力轴承边界润滑状态的方法,通过搭建推力轴承试验台,监测扭矩变化,确定不同温度和比压下的边界润滑转速,以获得P-ω函数曲线。比压升高后边界润滑转速升高;曲线上方是流体润滑区,下方是边界润滑区。基于雷诺方程建立可倾瓦推力轴承模型,分析了不同进口油温、不同油膜厚度下润滑转速与比压的关系,结果表明,油膜厚度减小到2.5 μm时,计算得到P-ω函数曲线与试验结果基本一致;进口油温提高会导致黏度下降,P-ω函数曲线整体上移。本研究可为核主泵推力轴承润滑状态判断提供指导。
-
关键词:
- 核电厂反应堆冷却剂泵(简称核主泵) /
- 推力轴承 /
- 边界润滑 /
- 比压-转速(P-ω)函数曲线
Abstract: The state of lubrication significantly affects bearing wear. In this paper, a method for judging the boundary lubrication of thrust bearings of the nuclear power plant reactor coolant pump (nuclear coolant pump) based on the pressure-speed (P-ω) function curve is proposed. A thrust bearing test rig was set up, and the boundary lubrication speed under different temperatures and specific pressures was determined by monitoring torque changes, obtaining the P-ω function curve. After the specific pressure increases, the boundary lubrication speed rises. Above the curve is the fluid lubrication zone, and below is the boundary lubrication zone. A tiltable pad thrust bearing model was established based on the Reynolds equation, analyzing the relationship between speed and specific pressure under different oil inlet temperatures and film thicknesses. The study found that when the film thickness decreased to 2.5 μm, the calculated P-ω function curve was basically consistent with the experimental results. An increase in oil inlet temperature leads to a decrease in viscosity, and the boundary lubrication P-ω function curve shifts upward as a whole. This research can provide guidance for judging the lubrication state of nuclear coolant pump thrust bearings. -
表 1 被试推力轴承基本参数
Table 1. Basic Parameters of the Tested Thrust Bearings
参数名 参数值及详情 轴瓦内半径/mm 49 轴瓦外半径/mm 99 轴承瓦块扇形角 45° 轴承瓦块数 4 推力瓦基体材料 钢20 推力瓦瓦面材料 锡基巴氏合金 润滑油牌号 ISO VG32 进口油温/℃ 40 -
[1] 张文涛,张智鑫. 基于CFD的阶梯面推力滑动轴承承载性能分析[J]. 机械传动,2018, 42(4): 39-42,51. [2] 黄国庆,于雪梅,王衍,等. 动压密封技术界面微尺度效应研究现状及其有效利用思路探讨[J]. 西安理工大学学报,2021, 37(1): 71-77. [3] 李鸿举,刘莹,廖浩然,等. 基于耗散磨损模型的典型机械密封配副混合润滑磨损加速试验研究[J]. 摩擦学学报,2023, 43(3): 293-302. [4] 刘佳佳,刘斌,苏跃威,等. 不同材料水润滑艉轴承的摩擦特性和磨损寿命研究[J]. 润滑与密封,2017, 42(8): 105-109. [5] XIE Z L, JIAO J, YANG K, et al. A state-of-art review on the water-lubricated bearing[J]. Tribology International, 2023, 180: 108276. doi: 10.1016/j.triboint.2023.108276 [6] XIE Z L, RAO Z S, TA N, et al. Investigations on transitions of lubrication states for water lubricated bearing. Part I: determination of friction coefficients and film thickness ratios[J]. Industrial Lubrication and Tribology, 2016, 68(3): 404-415. doi: 10.1108/ILT-10-2015-0146 [7] XIE Z L, RAO Z S, TA N, et al. Investigations on transitions of lubrication states for water lubricated bearing. Part II: further insight into the film thickness ratio lambda[J]. Industrial Lubrication and Tribology, 2016, 68(3): 416-429. doi: 10.1108/ILT-10-2015-0147 [8] 杨浩,欧阳武,金勇,等. 考虑粗糙度的船舶水润滑高分子轴承弹流润滑性能研究[J]. 润滑与密封,2023, 48(11): 45-50. doi: 10.3969/j.issn.0254-0150.2023.11.006 [9] 解忠良,邹冬林,塔娜,等. 某型立式给水泵机组水润滑轴承—转子系统的动力学特性分析[J]. 噪声与振动控制,2015, 35(3): 102-107. [10] 朱鹏娟,刘晓玲,何文卓,等. 供油条件对线接触热混合润滑性能的影响[J]. 润滑与密封,2023, 48(4): 112-119. doi: 10.3969/j.issn.0254-0150.2023.04.015 [11] MOSLEH M, SHIRVANI K A. In-situ nanopolishing by nanolubricants for enhanced elastohydrodynamic lubrication[J]. Wear, 2013, 301(1-2): 137-143. doi: 10.1016/j.wear.2013.01.056 [12] 张直明. 滑动轴承的液体动力润滑理论[M]. 北京: 高等教育出版社,1986: 23-25. [13] 温诗铸,黄平. 摩擦学原理[M]. 第三版. 北京: 清华大学出版社,2008: 23-25. [14] MARKIN D, MCCARTHY D M C, GLAVATSKIH S B. A FEM approach to simulation of tilting-pad thrust bearing assemblies[J]. Tribology International, 2003, 36(11): 807-814. doi: 10.1016/S0301-679X(03)00097-5 -