高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广谱系组件计算程序开发

张晋超 张乾 赵强 邹航 于嘉蕾 武世伏 陈莹

张晋超, 张乾, 赵强, 邹航, 于嘉蕾, 武世伏, 陈莹. 广谱系组件计算程序开发[J]. 核动力工程, 2024, 45(5): 19-25. doi: 10.13832/j.jnpe.2024.05.0019
引用本文: 张晋超, 张乾, 赵强, 邹航, 于嘉蕾, 武世伏, 陈莹. 广谱系组件计算程序开发[J]. 核动力工程, 2024, 45(5): 19-25. doi: 10.13832/j.jnpe.2024.05.0019
Zhang Jinchao, Zhang Qian, Zhao Qiang, Zou Hang, Yu Jialei, Wu Shifu, Chen Ying. Development of Computing Code for Full Spectrum Assembly[J]. Nuclear Power Engineering, 2024, 45(5): 19-25. doi: 10.13832/j.jnpe.2024.05.0019
Citation: Zhang Jinchao, Zhang Qian, Zhao Qiang, Zou Hang, Yu Jialei, Wu Shifu, Chen Ying. Development of Computing Code for Full Spectrum Assembly[J]. Nuclear Power Engineering, 2024, 45(5): 19-25. doi: 10.13832/j.jnpe.2024.05.0019

广谱系组件计算程序开发

doi: 10.13832/j.jnpe.2024.05.0019
基金项目: 国家自然科学基金(12105063);中核集团“青年英才”项目
详细信息
    作者简介:

    张晋超 (1996—),男,博士研究生,现主要从事反应堆物理研究,E-mail: 13935397912@hrbeu.edu.cn

    通讯作者:

    赵 强,E-mail: zhaoqiang@hrbeu.edu.cn

  • 中图分类号: TL329

Development of Computing Code for Full Spectrum Assembly

  • 摘要: 为解决先进组件设计中存在的多样几何设计问题和使用慢化材料引入的复杂能谱问题,以进一步提升组件程序设计能力,本文基于非结构网格,设计了基于2164群结构的子群共振计算与特征线输运计算的组合策略,并完成了程序开发。程序应用了高效多核素共振干涉方法、散射源移位算法和千群级别的图形处理器(GPU)特征线并行方案以保证计算效率。对不同能谱、不同几何特征的先进组件设计的验证结果表明:与蒙特卡洛基准解相比,对于快谱组件问题,特征值偏差均低于72pcm(1pcm=10−5);对于含慢化材料的快谱组件问题,特征值偏差均低于132pcm。因此,本文设计的计算方案能够处理具有复杂几何和复杂能谱的组件问题。

     

  • 图  1  子群参数制作流程

    Figure  1.  Work Flow for Generation of Subgroup Parameters

    图  2  不同核素裂变谱对比

    Figure  2.  Comparision of Fission Spectrum for Different Isotopes

    图  3  2164群结构

    Figure  3.  2164-group Structure

    图  4  GPU MOC输运扫描流程

    Figure  4.  MOC Transport Sweep on GPU

    图  5  程序计算流程

    Figure  5.  Calculation Scheme of the Code

    图  6  快谱组件问题

    Figure  6.  Fast Spectrum Assembly Problems

    图  7  快谱组件问题注量率对比

    Figure  7.  Flux Comparison for Fast Assembly Problems

    图  8  含慢化材料的快谱组件问题

    Figure  8.  Fast Spectrum Assembly Problems Using Moderator

    图  9  不同散射阶数下注量率对比

    Figure  9.  Comparison of Flux with Different Scattering Orders

    表  1  快谱组件问题特征值对比

    Table  1.   Eigenvalue Comparison for Fast Spectrum Problems

    问题 OpenMC 子群方法 特征值偏差/pcm
    常规组件 1.26270 1.26215 −55
    半价值组件 1.04132 1.04060 −72
    下载: 导出CSV

    表  2  含慢化材料的快谱组件问题特征值和EALF对比

    Table  2.   Comparison of Eigenvalue and EALF for Fast Spectrum Assembly Problems Using Moderator

    几何 OpenMC计算特征值 EALF/MeV 子群方法计算特征值 特征值偏差/pcm
    P0 P1 P2 P3 P0 P1 P2 P3
    常规组件 1.45504 1.191×10−1 1.45528 1.45521 1.45526 1.45523 24 17 22 19
    紧凑组件 1.45181 1.016×10−3 1.46121 1.44953 1.45057 1.45049 940 −229 −124 −132
    环形组件 1.42411 1.433×10−3 1.42728 1.42215 1.42283 1.42283 317 −196 −128 −128
    优化组件 1.40462 1.858×10−3 1.40527 1.40312 1.40346 1.40344 65 −150 −116 −118
    下载: 导出CSV

    表  3  不同散射源计算方法下GPU计算时间对比

    Table  3.   Comparison of GPU Computation Time under Different Scattering Source Calculating Methods

    栅元
    圈数
    平源
    区数
    显存/
    GB
    4090服务器 3090服务器
    原子加
    技术耗时/s
    移位技
    术耗时/s
    原子加
    技术耗时/s
    移位技
    术耗时/s
    3 648 1.95 4.2 3.4 18.3 7.2
    4 1272 3.02 6.9 5.3 32.9 12.7
    5 2112 4.65 9.5 7.0 50.5 18.1
    6 3168 6.70 13.2 9.6 72.4 24.8
    7 4440 9.13 17.2 12.4 98.2 32.8
    8 5928 12.00 22.0 15.6 128.3 42.3
    9 7632 15.20 27.5 19.4 162.6 52.9
    10 9552 18.84 33.6 23.6 201.9 64.9
    下载: 导出CSV
  • [1] WEI L F, ZHENG Y Q, DU X N, et al. Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis[J]. Annals of Nuclear Energy, 2022, 165: 108664. doi: 10.1016/j.anucene.2021.108664
    [2] LEE C, YANG W S. An improved resonance self-shielding method for heterogeneous fast reactor assembly and core calculations[C]//Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: American Nuclear Society, 2013.
    [3] LEE C, YANG W S. MC2-3: multigroup cross section generation code for fast reactor analysis[J]. Nuclear Science and Engineering, 2017, 187(3): 268-290. doi: 10.1080/00295639.2017.1320893
    [4] JEON B K, YANG W S, JUNG Y S, et al. Extension of MC2-3 for generation of multigroup cross sections in thermal energy range[C]//International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Jeju, Korea: American Nuclear Society, 2017.
    [5] MAO L, ZMIJAREVIC I, SANCHEZ R. Resonance self-shielding methods for fast reactor calculations—Comparison of a new tone’s method with the subgroup method in APOLLO3®[J]. Nuclear Science and Engineering, 2017, 188(1): 15-32. doi: 10.1080/00295639.2017.1332890
    [6] CHOI N, KANG J, JOO H G. Preliminary performance assessment of GPU acceleration module in nTRACER[C]//Transactions of the Korean Nuclear Society Autumn Meeting. Yeosu, Korea: Korean Nuclear Society, 2018.
    [7] MACFARLANE R E, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [8] RUGGIERI J M, TOMMASI J, LEBRAT J F, et al. ERANOS 2.1: international code system for GEN IV fast reactor analysis[C]//Proceedings of the International Congress on Advances in Nuclear Power Plants. Reno: American Nuclear Society, 2006.
    [9] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [10] FEI T, MOHAMED A, KIM T K. Neutronics benchmark specifications for EBR-II shutdown heat removal test SHRT-45R - revision 1: ANL-ARC-228 Rev. 1[R]. Argonne: Argonne National Laboratory, 2013.
    [11] WANG L J, LU D, YAO L, et al. Study on temperature feedback effect of supercritical CO2–cooled reactor[J]. Frontiers in Energy Research, 2021, 9: 764906. doi: 10.3389/fenrg.2021.764906
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  16
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-02-07
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回