Development of Computing Code for Full Spectrum Assembly
-
摘要: 为解决先进组件设计中存在的多样几何设计问题和使用慢化材料引入的复杂能谱问题,以进一步提升组件程序设计能力,本文基于非结构网格,设计了基于2164群结构的子群共振计算与特征线输运计算的组合策略,并完成了程序开发。程序应用了高效多核素共振干涉方法、散射源移位算法和千群级别的图形处理器(GPU)特征线并行方案以保证计算效率。对不同能谱、不同几何特征的先进组件设计的验证结果表明:与蒙特卡洛基准解相比,对于快谱组件问题,特征值偏差均低于72pcm(1pcm=10−5);对于含慢化材料的快谱组件问题,特征值偏差均低于132pcm。因此,本文设计的计算方案能够处理具有复杂几何和复杂能谱的组件问题。
-
关键词:
- 广谱 /
- 组件计算 /
- 共振计算 /
- 特征线方法(MOC) /
- 图形处理器(GPU)
Abstract: In order to address the issues caused by the diverse geometric designs and complex energy spectrum problems introduced by the use of moderator materials in advanced assembly designs, and to further enhance the design capability of the assembly code, this paper designs a combination strategy and develops a corresponding code based on unstructured mesh. The strategy combines the subgroup method, which is based on a group structure including 2164 groups, with the method of characteristic transport. To ensure computational efficiency, the code employs the efficient multi-nuclide resonance interference method, offset algorithm for scattering source and parallel scheme of graphics processing unit (GPU) characteristics at thousand-group level. Advanced assembly designs with different energy spectra and geometric features are selected to validate the proposed method. The results indicate that, compared to the Monte Carlo reference, the deviations in eigenvalue are within 72pcm (1pcm=10−5) for problems with fast spectra, and within 132pcm for problems utilizing moderators. In conclusion, the calculation scheme proposed in this paper can handle assembly problems characterized by complex geometry and complex energy spectrum. -
表 1 快谱组件问题特征值对比
Table 1. Eigenvalue Comparison for Fast Spectrum Problems
问题 OpenMC 子群方法 特征值偏差/pcm 常规组件 1.26270 1.26215 −55 半价值组件 1.04132 1.04060 −72 表 2 含慢化材料的快谱组件问题特征值和EALF对比
Table 2. Comparison of Eigenvalue and EALF for Fast Spectrum Assembly Problems Using Moderator
几何 OpenMC计算特征值 EALF/MeV 子群方法计算特征值 特征值偏差/pcm P0 P1 P2 P3 P0 P1 P2 P3 常规组件 1.45504 1.191×10−1 1.45528 1.45521 1.45526 1.45523 24 17 22 19 紧凑组件 1.45181 1.016×10−3 1.46121 1.44953 1.45057 1.45049 940 −229 −124 −132 环形组件 1.42411 1.433×10−3 1.42728 1.42215 1.42283 1.42283 317 −196 −128 −128 优化组件 1.40462 1.858×10−3 1.40527 1.40312 1.40346 1.40344 65 −150 −116 −118 表 3 不同散射源计算方法下GPU计算时间对比
Table 3. Comparison of GPU Computation Time under Different Scattering Source Calculating Methods
栅元
圈数平源
区数显存/
GB4090服务器 3090服务器 原子加
技术耗时/s移位技
术耗时/s原子加
技术耗时/s移位技
术耗时/s3 648 1.95 4.2 3.4 18.3 7.2 4 1272 3.02 6.9 5.3 32.9 12.7 5 2112 4.65 9.5 7.0 50.5 18.1 6 3168 6.70 13.2 9.6 72.4 24.8 7 4440 9.13 17.2 12.4 98.2 32.8 8 5928 12.00 22.0 15.6 128.3 42.3 9 7632 15.20 27.5 19.4 162.6 52.9 10 9552 18.84 33.6 23.6 201.9 64.9 -
[1] WEI L F, ZHENG Y Q, DU X N, et al. Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis[J]. Annals of Nuclear Energy, 2022, 165: 108664. doi: 10.1016/j.anucene.2021.108664 [2] LEE C, YANG W S. An improved resonance self-shielding method for heterogeneous fast reactor assembly and core calculations[C]//Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: American Nuclear Society, 2013. [3] LEE C, YANG W S. MC2-3: multigroup cross section generation code for fast reactor analysis[J]. Nuclear Science and Engineering, 2017, 187(3): 268-290. doi: 10.1080/00295639.2017.1320893 [4] JEON B K, YANG W S, JUNG Y S, et al. Extension of MC2-3 for generation of multigroup cross sections in thermal energy range[C]//International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Jeju, Korea: American Nuclear Society, 2017. [5] MAO L, ZMIJAREVIC I, SANCHEZ R. Resonance self-shielding methods for fast reactor calculations—Comparison of a new tone’s method with the subgroup method in APOLLO3®[J]. Nuclear Science and Engineering, 2017, 188(1): 15-32. doi: 10.1080/00295639.2017.1332890 [6] CHOI N, KANG J, JOO H G. Preliminary performance assessment of GPU acceleration module in nTRACER[C]//Transactions of the Korean Nuclear Society Autumn Meeting. Yeosu, Korea: Korean Nuclear Society, 2018. [7] MACFARLANE R E, MUIR D W, BOICOURT R M, et al. The NJOY nuclear data processing system, version 2016: LA-UR-17-20093[R]. Los Alamos: Los Alamos National Laboratory, 2017. [8] RUGGIERI J M, TOMMASI J, LEBRAT J F, et al. ERANOS 2.1: international code system for GEN IV fast reactor analysis[C]//Proceedings of the International Congress on Advances in Nuclear Power Plants. Reno: American Nuclear Society, 2006. [9] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [10] FEI T, MOHAMED A, KIM T K. Neutronics benchmark specifications for EBR-II shutdown heat removal test SHRT-45R - revision 1: ANL-ARC-228 Rev. 1[R]. Argonne: Argonne National Laboratory, 2013. [11] WANG L J, LU D, YAO L, et al. Study on temperature feedback effect of supercritical CO2–cooled reactor[J]. Frontiers in Energy Research, 2021, 9: 764906. doi: 10.3389/fenrg.2021.764906