高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非结构网格变分节块法在氦氙冷却小型反应堆中的应用

孙启政 刘晓晶 张滕飞

孙启政, 刘晓晶, 张滕飞. 非结构网格变分节块法在氦氙冷却小型反应堆中的应用[J]. 核动力工程, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026
引用本文: 孙启政, 刘晓晶, 张滕飞. 非结构网格变分节块法在氦氙冷却小型反应堆中的应用[J]. 核动力工程, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026
Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor[J]. Nuclear Power Engineering, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026
Citation: Sun Qizheng, Liu Xiaojing, Zhang Tengfei. Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor[J]. Nuclear Power Engineering, 2024, 45(5): 26-31. doi: 10.13832/j.jnpe.2024.05.0026

非结构网格变分节块法在氦氙冷却小型反应堆中的应用

doi: 10.13832/j.jnpe.2024.05.0026
基金项目: 国家重点研发计划(2020YFB1901900);国家自然科学基金面上项目(12175138)
详细信息
    作者简介:

    孙启政(1997—),男,博士研究生,现主要从事中子输运算法相关研究,E-mail: qizhengsun@sjtu.edu.cn

    通讯作者:

    张滕飞,E-mail: zhangtengfei@sjtu.edu.cn

  • 中图分类号: TL329

Application of Unstructured Mesh Variational Nodal Method in He-Xe Cooled Micro Reactor

  • 摘要: 先进小型反应堆设计方案具有复杂的几何结构和较强的中子泄漏特征。为更准确地对复杂几何的先进小型反应堆设计的中子学特性进行分析,本研究提出了一种基于离散纵标(SN)的非结构网格变分节块法(UVNM-SN)。UVNM-SN从二阶偶对称输运方程的泛函形式出发,在空间上采用任意三角形非结构网格以及坐标变换技术,角度上则采用SN将原方程进行解耦;选取了氦氙(He-Xe)冷却小型反应堆SIMONS作为分析对象,验证了UVNM-SN在实际应用对象中的性能。计算结果表明,UVNM-SN在复杂几何的非均匀问题中具有良好的几何适应性以及计算精度,可为先进反应堆数值模拟提供新的计算思路。

     

  • 图  1  SIMONS算例八分之一堆芯网格剖分示意图

    Figure  1.  One-eighth of the Radial Meshes Used for the SIMONS Test Case

    图  2  SIMONS算例的三维功率分布示意图

    Figure  2.  Schematic Diagram of 3-D Power Distribution for the SIMONS Test Problem

    图  3  SIMONS算例归一化相对功率误差分布

    Figure  3.  Distribution of Normalized Relative Power Error between UVNM-SN and MGMC for the SIMONS Test Problem

    图  4  SIMONS算例多群蒙卡功率标准差分布

    Figure  4.  Standard Deviation Distribution of MGMC Pin Power for the SIMONS Test Problem

    表  1  SIMONS算例的主要参数

    Table  1.   Main Parameters of the SIMONS Test Problem

    参数名 参数值
    燃料棒直径/cm 1.5
    He-Xe冷却剂通道直径/cm 0.8
    包壳厚度/cm 0.05
    燃料-He-Xe冷却剂通道中心距/cm 1.5
    燃料棒数目/根 1015
    基体半径/cm 45
    基体高度/cm 100
    径向反射层厚度/cm 20
    轴向反射层厚度/cm 10
    下载: 导出CSV

    表  2  不同数值方法在SIMONS算例中的数值结果

    Table  2.   Solutions of Different Numerical Methods for the SIMONS Test Problem.

    数值方法 多群蒙卡 UVNM-SN 扩散近似
    keff 1.15380±0.00002 1.15450 1.12966
    keff误差/pcm 70 −2414
    最大积分棒功率误差/% 0.63 7.20
    平均积分棒功率误差/% 0.16 1.72
    下载: 导出CSV
  • [1] STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Laboratory, 2017.
    [2] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [3] EKLUND M D, DUPONT M, CARACAPPA P F, et al. Neutronics simulations of the RPI Walthousen Reactor Critical Facility (RCF) using Proteus-SN[J]. Transactions of the American nuclear society, 2017, 117: 114-115.
    [4] WANG Y Q, SCHUNERT S, ORTENSI J, et al. Rattlesnake: a MOOSE-based multiphysics multischeme radiation transport application[J]. Nuclear Technology, 2021, 207(7): 1047-1072. doi: 10.1080/00295450.2020.1843348
    [5] FIORINA C, HURSIN M, PAUTZ A. Extension of the GeN-Foam neutronic solver to SP3 analysis and application to the CROCUS experimental reactor[J]. Annals of Nuclear Energy, 2017, 101: 419-428. doi: 10.1016/j.anucene.2016.11.042
    [6] JARETEG K, VINAI P, SASIC S, et al. Coupled fine-mesh neutronics and thermal-hydraulics – modeling and implementation for PWR fuel assemblies[J]. Annals of Nuclear Energy, 2015, 84: 244-257. doi: 10.1016/j.anucene.2015.01.037
    [7] WANG J P, MARTIN W R, DOWNAR T J, et al. Code verification and solution verification framework in pin-resolved neutron transport code MPACT[J]. Annals of Nuclear Energy, 2022, 178: 109365. doi: 10.1016/j.anucene.2022.109365
    [8] HSIEH A, ZHANG G C, YANG W S. Consistent transport transient solvers of the high-fidelity transport code PROTEUS-MOC[J]. Nuclear Science and Engineering, 2020, 194(7): 508-540. doi: 10.1080/00295639.2020.1746619
    [9] CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049
    [10] ZHAO C, PENG X J, ZHANG H B, et al. A new numerical nuclear reactor neutronics code SHARK[J]. Frontiers in Energy Research, 2021, 9: 784247. doi: 10.3389/fenrg.2021.784247
    [11] ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
    [12] SMITH M A, TSOULFANIDIS N, LEWIS E E, et al. A finite subelement generalization of the variational nodal method[J]. Nuclear Science and Engineering, 2003, 144(1): 36-46. doi: 10.13182/NSE144-36
    [13] ZHANG T F, WANG Y P, LEWIS E E, et al. A three-dimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 188(2): 160-174. doi: 10.1080/00295639.2017.1350002
    [14] ZHANG T F, LEWIS E E, SMITH M A, et al. A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 186(2): 120-133. doi: 10.1080/00295639.2016.1273023
    [15] WANG Y Q, RABITI C, PALMIOTTI G. Krylov solvers preconditioned with the low-order red-black algorithm for the PN hybrid FEM for the INSTANT code[C]//Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011). Rio de Janeiro, RJ, Brazil: CD-ROM, Latin American Section (LAS), American Nuclear Society (ANS), 2011.
    [16] LI X Y, LIU X J, CHAI X, et al. Multi-physics coupling simulation of small mobile nuclear reactor with finite element-based models[J]. Computer Physics Communications, 2023, 293: 108900. doi: 10.1016/j.cpc.2023.108900
    [17] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [18] GEUZAINE C, REMACLE J F. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
    [19] SUN Q Z, XIAO W, LI X Y, et al. A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems[J]. Nuclear Engineering and Technology, 2023, 55(6): 2172-2194. doi: 10.1016/j.net.2023.02.021
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2024-01-13
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回