Study on Reactivity Control of Long-life Small Lead-cooled Fast Reactor
-
摘要: 长寿期小型铅基快堆寿期燃耗反应性损失较大,需要建立有效的反应性补偿手段。小型堆紧凑的堆芯布置制约了控制棒系统的设计,且过高的控制棒价值会带来堆芯安全隐患。本研究针对自主设计的长寿期小型铅基快堆LFR-180(寿期反应性波动为6681pcm,1pcm=10−5)开展反应性控制研究,探索基于可燃毒物实现反应性控制的方案,并进行事故瞬态安全特性分析。结果表明,以ZrH1.6为慢化剂,B4C为可燃毒物,在组件内联合布置,可将LFR-180寿期内反应性波动降低到575pcm。同时,该反应性控制方案显著提高了堆芯在控制棒意外提出(CRW)事故下堆芯的温度安全裕量,并保证了无保护一回路失流(ULOF)和无保护失热阱(ULOHS)事故下堆芯安全。本研究建立的可燃毒物控制方案能够应用于长寿期小型铅基快堆的反应性补偿。Abstract: An effective reactivity control method is needed to compensate for the large reactivity swing during the long lifetime of small lead-cooled fast reactors. However, the compact core structure constrains the arrangement of the control rod system, and the control rod with high reactivity worth can bring safety problems to the core. In this study, the reactivity control of LFR-180 (lifetime reactivity swing is 6681pcm, 1pcm=10−5), a self-designed small lead-based fast reactor, is studied, the scheme of reactivity control based on flammable poisons is explored, and the transient safety characteristics of accidents are analyzed. The results show that the reactivity swing of LFR-180 can be reduced to 575pcm by using ZrH1.6 as moderator and B4C as burnable poison. At the same time, the reactivity control scheme significantly improves the temperature safety margin of the core under the accident of control rod withdrawal (CRW), and ensures the safety of the core under the accident of unprotected loss of primary flow (ULOF) and unprotected loss of heat sink (ULOHS). The burnable poison control scheme established in this study can be applied to the reactivity compensation of small lead-cooled fast reactors with long life.
-
Key words:
- Small lead-cooled fast reactor /
- Reactivity control /
- Burnable poison /
- Safety analysis
-
表 1 LFR-180控制棒系统设计
Table 1. Design of Control Rod System of LFR-180
堆芯物理参数 PCR SCR 反应性波动/pcm 6681±21 反应性反馈: HFP to CZP/pcm 751±51 反应性反馈: HFP to HZP/pcm 459±39 控制棒组数量 19 12 总价值/pcm 14005±23 3370±19 反应性裕量/pcm 358±21 358±21 “卡棒”准则反应性裕量/pcm 846±24 281±19 停堆深度/pcm 5369±68 2272±52 表 2 LFR-180BP控制棒系统设计
Table 2. Control Rod System Design of LFR-180BP
堆芯物理参数 PCR SCR 反应性波动/pcm 575±23 反应性反馈: HFP to CZP/pcm 1065±53 反应性反馈: HFP to HZP/pcm 745±39 控制棒组数量 6 6 总价值/pcm 4361±23 2377±21 控制棒意外提出反应性裕量/pcm 96±21 96±22 “卡棒”准则反应性裕量/pcm 727±23 396±19 停堆深度/pcm 1898±69 1140±53 表 3 堆芯最高线功率值 W/cm
Table 3. Peak Linear Power in Core
堆芯设计 BOL EOL LFR-180 325 300 LFR-180BP 363(38) 414(114) 括号内数字表示相对于LFR-180的增加值 表 4 堆芯反应性反馈系数
Table 4. Reactivity Coefficients of Core
参数 LFR-180 LFR-180BP BOL EOL BOL EOL 缓发中子份额/pcm 777 658 776 674 寿期反应性波动/pcm 6681 575 堆芯空泡价值/pcm −16515±25 −16380±25 −10425±25 −9796±25 冷却剂密度反应性反馈系数/(pcm·K−1) −0.68±0.02 −0.60±0.03 −0.43±0.03 −0.37±0.03 多普勒常数/pcm 燃料 −476±27 −481±31 −834±31 −1011±30 结构材料 −24±26 −57±26 −82±30 −23±30 堆芯径向膨胀反应性反馈系数/(pcm·K−1) −0.45±0.04 −0.44±0.04 −0.50±0.04 −0.48±0.04 燃料包壳轴向膨胀反应性反馈系数/(pcm·K−1) 0.18±0.02 0.14±0.03 0.17±0.03 0.12±0.03 燃料轴向膨胀反应性反馈系数/(pcm·K−1) −0.18±0.05 −0.17±0.05 −0.28±0.05 −0.19±0.05 -
[1] 周培德,侯斌,陈晓亮,等. 小型反应堆技术发展趋势[J]. 原子能科学技术,2020, 54(S1): 218-225. [2] GUO H, SCIORA P, KOOYMAN T, et al. Application of boron carbide as burnable poison in sodium fast reactors[J]. Nuclear Technology, 2019, 205(11): 1433-1446. doi: 10.1080/00295450.2019.1620054 [3] 孙燕婷. 长寿期铅基堆堆芯物理设计研究[D]. 合肥: 中国科学技术大学,2018. [4] GUO C, LU D G, ZHANG X, et al. Development and application of a safety analysis code for small Lead cooled Fast Reactor SVBR 75/100[J]. Annals of Nuclear Energy, 2015, 81: 62-72. doi: 10.1016/j.anucene.2015.03.021 [5] VETRANO J B. Hydrides as neutron moderator and reflector materials[J]. Nuclear Engineering and Design, 1971, 14(3): 390-412. doi: 10.1016/0029-5493(70)90159-7 [6] ZUZEK E, ABRIATA J P, SAN-MARTIN A, et al. The H-Zr (hydrogen-zirconium) system[J]. Bulletin of Alloy Phase Diagrams, 1990, 11(4): 385-395. doi: 10.1007/BF02843318 [7] POLIDORI M, BANDINI G. Report on the results of analysis of DEC events for the ETDR (ALFRED):UTFISSM-P9SZ-007[R]. Italy: ENEA, 2013: 1-402.