高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于任意四边形网格和保角变换的中子扩散求解方法研究

郭林 万承辉 吴宏春

郭林, 万承辉, 吴宏春. 基于任意四边形网格和保角变换的中子扩散求解方法研究[J]. 核动力工程, 2024, 45(5): 53-61. doi: 10.13832/j.jnpe.2024.05.0053
引用本文: 郭林, 万承辉, 吴宏春. 基于任意四边形网格和保角变换的中子扩散求解方法研究[J]. 核动力工程, 2024, 45(5): 53-61. doi: 10.13832/j.jnpe.2024.05.0053
Guo Lin, Wan Chenghui, Wu Hongchun. Method Research on Neutron-diffusion Solution Based on Arbitrary Quadrilateral Mesh and Conformal Mapping[J]. Nuclear Power Engineering, 2024, 45(5): 53-61. doi: 10.13832/j.jnpe.2024.05.0053
Citation: Guo Lin, Wan Chenghui, Wu Hongchun. Method Research on Neutron-diffusion Solution Based on Arbitrary Quadrilateral Mesh and Conformal Mapping[J]. Nuclear Power Engineering, 2024, 45(5): 53-61. doi: 10.13832/j.jnpe.2024.05.0053

基于任意四边形网格和保角变换的中子扩散求解方法研究

doi: 10.13832/j.jnpe.2024.05.0053
基金项目: 国家自然科学基金(12005164)
详细信息
    作者简介:

    郭 林(1997—),男,博士研究生,现主要从事核反应堆物理计算方法研究,E-mail: gl1125@stu.xjtu.edu.cn

    通讯作者:

    万承辉,E-mail: wan.ch@mail.xjtu.edu.cn

  • 中图分类号: TL329

Method Research on Neutron-diffusion Solution Based on Arbitrary Quadrilateral Mesh and Conformal Mapping

  • 摘要: 为解决传统“横平竖直”的节块网格难以处理压水堆燃料组件弯曲导致的节块网格变形问题,本文根据非线性迭代中子扩散求解思路,开展了基于任意四边形网格和保角变换的中子扩散求解方法研究。采用任意四边形网格刻画燃料组件弯曲导致的节块网格变形现象,建立基于任意四边形网格的全局粗网差分有限方程;采用保角变换将任意四边形变换为矩形,建立基于保角变换的局部两节块展开方程。基于二维mini-core堆芯和华龙一号堆芯构造弯曲算例的计算结果表明:本文所提方法计算弯曲算例的堆芯有效增殖系数(keff)和功率分布结果与NECP-MCX参考解符合较好。因此,本文提出的方法能够较为准确地模拟燃料组件弯曲现象。

     

  • 图  1  任意四边形网格划分

    Figure  1.  Arbitrary Quadrilateral Mesh Division

    图  2  任意四边形网格边界连续

    ${{l}}_{i+}^k $—第k个节块中心到i正方向面的距离;${{l}}_{i-}^{k+1} $—第(k+1)个节块中心到i负方向面的距离

    Figure  2.  Continuous Boundary between Quadrilateral Mesh

    图  3  任意四边形网格到矩形网格的保角变换

    Figure  3.  Conformal Mapping from Quadrilateral to Rectangle

    图  4  结合保角变换的中子扩散非线性迭代流程

    Figure  4.  Nonlinear Iteration Process for Neutron-diffusion Combined with Conformal Mapping

    图  5  二维 mini-core堆芯径向布置

    Figure  5.  Radial Configuration of 2D mini-core

    图  6  二维 mini-core常规模型功率分布相对偏差 %

    Figure  6.  Relative Bias of Power Distribution for 2D mini-core Normal Model

    图  7  二维 mini-core弯曲算例

    Figure  7.  Bowing Cases of 2D mini-core

    图  8  NECP-MCX计算二维 mini-core弯曲算例功率分布相对变化 %

    Figure  8.  Relative Bias of Power Distribution for 2D Mini-core Bowing Cases by NECP-MCX

    图  9  改进前的Bamboo-C计算2D mini-core弯曲算例功率分布相对变化 %

    Figure  9.  Relative Bias of Power Distribution for 2D Mini-core Bowing Cases by Previous Bamboo-C

    图  10  改进后的Bamboo-C计算2D mini-core弯曲算例功率分布相对变化 %

    Figure  10.  Relative Bias of Power Distribution for 2D Mini-core Bowing Cases by Improved Bamboo-C

    图  11  华龙一号堆芯径向布置

    Figure  11.  Radial Configuration of HPR1000

    图  12  华龙一号堆芯常规模型功率分布相对偏差 %

    Figure  12.  Relative Bias of Power Distribution for HPR1000 Normal Model

    图  13  华龙一号弯曲算例示意图

    Figure  13.  Schematic Diagram of Bowing Case for HPR1000

    图  14  NECP-MCX计算华龙一号弯曲算例功率分布相对变化 %

    Figure  14.  Relative Bias of Power Distribution for HPR1000 Bowing Cases by NECP-MCX

    图  15  改进前的Bamboo-C计算华龙一号弯曲算例功率分布相对变化 %

    Figure  15.  Relative Bias of Power Distribution for HPR1000 Bowing Cases by Previous Bamboo-C

    图  16  改进后的Bamboo-C计算华龙一号弯曲算例功率分布相对变化 %

    Figure  16.  Relative Bias of Power Distribution for HPR1000 Bowing Cases by Improved Bamboo-C

    表  1  二维 mini-core弯曲算例keff的对比

    Table  1.   Comparison of keff for 2D Mini-core Bowing Cases

    程序 keff相较于常规模型的变化/pcm
    弯曲算例1 弯曲算例2
    NECP-MCX −6 −70
    改进前的Bamboo-C −0.1 −15
    改进后的Bamboo-C −7.3 −44
    下载: 导出CSV

    表  2  华龙一号堆芯弯曲算例keff的对比

    Table  2.   Comparison of keff for HPR1000 Bowing Cases

    程序 keff相较于常规模型的变化/pcm
    弯曲算例1 弯曲算例2
    NECP-MCX −0.11 −0.50
    改进前的Bamboo-C −0.15 0.30
    改进后的Bamboo-C −0.16 0.13
    下载: 导出CSV
  • [1] 李伟才,肖忠. 压水堆燃料组件弯曲变形机理及规避措施[J]. 核动力工程,2008, 29(2): 55-57,73.
    [2] FRANCESCHINI F, FETTERMAN R J, LITTLE D C. Modification of the ANC Nodal Code for analysis of PWR assembly bow[C]//International Conference on the Physics of Reactors 'Nuclear Power: A Sustainable Resource’. Interlaken, Switzerland: Paul Scherrer Institut, 2008.
    [3] LITTLE D C, FETTERMAN R J. Assembly gap variation methods for the Westinghouse ANC nodal code-13D-01[C]//International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing. Seoul, Korea: American Nuclear Society, 2002.
    [4] LI J, ROCHMAN D, VASILIEV A, et al. Bowing effects on isotopic concentrations for simplified PWR assemblies and full cores[J]. Annals of Nuclear Energy, 2017, 110: 1023-1029. doi: 10.1016/j.anucene.2017.08.022
    [5] ROCHMAN D, MALA P, FERROUKHI H, et al. Bowing effects on power and burn-up distributions for simplified full PWR and BWR cores[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. Jeju, Korea: American Nuclear Society, 2017.
    [6] 厉井钢,王超,陈俊,等. PCM软件包燃料组件弯曲模型的开发及验证[J]. 强激光与粒子束,2022, 34(2): 026004.
    [7] WAN C H, GUO L, BAI J H. Method research and effect analysis of fuel-assembly bowing on neutron-physics simulations of HPR1000[J]. Annals of Nuclear Energy, 2023, 182: 109616. doi: 10.1016/j.anucene.2022.109616
    [8] 万承辉,李云召,郑友琦,等. 压水堆燃料管理软件Bamboo-C研发及工业确认[J]. 核动力工程,2021, 42(5): 15-22.
    [9] HE Q M, ZHENG Q, LI J, et al. NECP-MCX: a hybrid Monte-Carlo-Deterministic particle-transport code for the simulation of deep-penetration problems[J]. Annals of Nuclear Energy, 2021, 151: 107978. doi: 10.1016/j.anucene.2020.107978
    [10] LAWRENCE R D. Progress in nodal methods for the solution of the neutron diffusion and transport equations[J]. Progress in Nuclear Energy, 1986, 17(3): 271-301. doi: 10.1016/0149-1970(86)90034-X
    [11] CHAO Y A, TSOULFANIDIS N. Conformal mapping and hexagonal nodal methods-I: mathematical foundation[J]. Nuclear Science and Engineering, 1995, 121(2): 202-209. doi: 10.13182/NSE95-A28558
    [12] DRISCOLL T A, TREFETHEN L N. Schwarz-christoffel mapping[M]. Cambridge: Cambridge University Press, 2002: 1-8.
    [13] 崔建斌,姬安召,鲁洪江,等. Schwarz Christoffel变换数值解法[J]. 山东大学学报: 理学版,2016, 51(4): 104-111.
    [14] 李向阳,刘启伟,李庆,等. 华龙一号反应堆177堆芯核设计[J]. 核动力工程,2019, 40(S1): 8-12.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 修回日期:  2023-12-04
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回