高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鱼鳞仿生强化传热管内流体对流传热特性和熵产分析

刘小丫 赵新文 肖红光 冉令可 张银星 张永发 孙吉晨 丁铭

刘小丫, 赵新文, 肖红光, 冉令可, 张银星, 张永发, 孙吉晨, 丁铭. 鱼鳞仿生强化传热管内流体对流传热特性和熵产分析[J]. 核动力工程, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092
引用本文: 刘小丫, 赵新文, 肖红光, 冉令可, 张银星, 张永发, 孙吉晨, 丁铭. 鱼鳞仿生强化传热管内流体对流传热特性和熵产分析[J]. 核动力工程, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092
Liu Xiaoya, Zhao Xinwen, Xiao Hongguang, Ran Lingke, Zhang Yinxing, Zhang Yongfa, Sun Jichen, Ding Ming. Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes[J]. Nuclear Power Engineering, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092
Citation: Liu Xiaoya, Zhao Xinwen, Xiao Hongguang, Ran Lingke, Zhang Yinxing, Zhang Yongfa, Sun Jichen, Ding Ming. Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes[J]. Nuclear Power Engineering, 2024, 45(5): 92-98. doi: 10.13832/j.jnpe.2024.05.0092

鱼鳞仿生强化传热管内流体对流传热特性和熵产分析

doi: 10.13832/j.jnpe.2024.05.0092
基金项目: 173重点基础研究项目(2023-173ZD-135);国家自然科学基金项目(12102474)
详细信息
    作者简介:

    刘小丫(1993—),女,讲师,现主要从事热工水力方面的研究,E-mail: yokalxy@163.com

    通讯作者:

    赵新文,E-mail: 13871162114@yeah.net

  • 中图分类号: TK124;TL331

Analysis of Convective Heat Transfer Characteristics and Entropy Generation of Fluid in Fish-scale Bionic Enhanced Heat Transfer Tubes

  • 摘要: 随着仿生学的发展,仿生技术具有较好的减阻、传热效果。受自然界鱼鳞启发,本文提出了3类仿生强化传热管,通过数值模拟研究了湍流状态下(雷诺数Re在15700~62900范围内)仿生强化传热管不同深度、间距和角度对管内流体流动传热特性的影响。结果表明,3类仿生强化传热管均具有良好的强化传热效果,深度越大、间距越小、角度越小,则强化传热效果越好。相同条件下,对仿生强化传热管综合性能和熵产进行分析发现,类型2仿生强化传热管的综合性能最优,其评价准则数(PEC)最大,功率损失最小。

     

  • 图  1  3类仿生强化传热管

    Figure  1.  Three Types of Bionic Enhanced Heat Transfer Tube

    图  2  几何表征及边界条件

    Figure  2.  Geometrical Characterization and Boundary Conditions

    图  3  类型1仿生强化传热管的横截面网格

    Figure  3.  Mesh Grid Cut Plane of Type 1 Bionic Enhanced Heat Transfer Tube

    图  4  网格独立性验证

    Figure  4.  Grid Independence Validation

    图  5  数值模型验证

    Figure  5.  Simulation Model Validation

    图  6  不同类型仿生强化传热管传热的变化

    Figure  6.  Variation of Heat Transfer in Different Bionic Enhanced Heat Transfer Tube Types

    图  7  不同类型仿生强化传热管流动阻力的变化

    Figure  7.  Variation of Flow Resistance in Different Bionic Enhanced Heat Transfer Tube Types

    图  8  不同类型仿生强化传热管PEC随Re的变化

    Figure  8.  Variation of PEC with Re in Different Bionic Enhanced Heat Transfer Tube Types

    图  9  不同类型仿生强化传热管St/S0Sf/S0S/S0Re的变化

    Figure  9.  Variation of St/S0, Sf/S0 and S/S0 with Re in Different Bionic Enhanced Heat Transfer Tube Types

    图  10  Nu和PEC随Re的变化

    Figure  10.  Variation of Nu and PEC with Re

    图  11  类型3仿生强化传热管Nu、f和PEC随α的变化

    Figure  11.  Variation of Nu, f and PEC with α in Type 3 Bionic Enhanced Heat Transfer Tube

  • [1] BERGLES A E. Heat transfer enhancement—the encouragement and accommodation of high heat fluxes[J]. Journal of Heat Transfer, 1997, 119(1): 8-19. doi: 10.1115/1.2824105
    [2] 林宗虎,汪军,李瑞阳,等. 强化传热技术[M]. 北京: 化学工业出版社,2007: 6-7.
    [3] 胡庆祥,彭威,高跃,等. 高温气冷堆中间换热器异型管强化换热研究[J]. 工程热物理学报,2023, 44(7): 1935-1942.
    [4] SAHA S, SAHA S K. Enhancement of heat transfer of laminar flow of viscous oil through a circular tube having integral helical rib roughness and fitted with helical screw-tapes[J]. Experimental Thermal and Fluid Science, 2013, 47: 81-89. doi: 10.1016/j.expthermflusci.2013.01.003
    [5] 梁运民. 层流下楔形波浪带插入物流动及传热特性数值研究[D]. 武汉: 华中科技大学,2018.
    [6] LIU X Y, LI C, CAO X X, et al. Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1125-1136. doi: 10.1016/j.ijheatmasstransfer.2018.01.052
    [7] GOH A L. Nature-inspired enhanced microscale heat transfer in macro geometry[D]. Singapore: Nanyang Technological University, 2016.
    [8] GOH A L, OOI K T. Nature-inspired inverted fish scale microscale passages for enhanced heat transfer[J]. International Journal of Thermal Sciences, 2016, 106: 18-31. doi: 10.1016/j.ijthermalsci.2016.03.010
    [9] GOH A L, OOI K T. Scale-inspired enhanced microscale heat transfer in macro geometry[J]. International Journal of Heat and Mass Transfer, 2017, 113: 141-152. doi: 10.1016/j.ijheatmasstransfer.2017.05.067
    [10] DEY P, HEDAU G, SAHA S K. Experimental and numerical investigations of fluid flow and heat transfer in a bioinspired surface enriched microchannel[J]. International Journal of Thermal Sciences, 2019, 135: 44-60. doi: 10.1016/j.ijthermalsci.2018.08.042
    [11] LI P, GUO D Z, HUANG X Y. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846. doi: 10.1016/j.ijheatmasstransfer.2019.118846
    [12] HU K B, LU C, YU B C, et al. Optimization of bionic heat sinks with self-organized structures inspired by termite nest morphologies[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123735. doi: 10.1016/j.ijheatmasstransfer.2022.123735
    [13] 张凯,王飞龙,何雅玲. 新型仿生结构强化管流动与换热性能数值研究[J]. 工程热物理学报,2019, 40(2): 375-381.
    [14] 陈明健. 树状微通道散热器强化换热的数值模拟研究[D]. 南昌: 南昌大学,2022.
    [15] 王宁. 仿生蛛网型微通道散热器结构研究及参数优化[D]. 太原: 中北大学,2022.
    [16] 汪维伟,黄昕之,赵福云,等. 基于叶脉仿生的散热均热板性能研究[J]. 航天器环境工程,2021, 38(2): 138-147. doi: 10.12126/see.2021.02.004
    [17] 郭昊添,徐涛,梁逍,等. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报: 工学版,2018, 48(6): 1793-1798.
    [18] 刘辰玥,郑通,刘渊博,等. 异形仿生换热器壳侧对流换热的高效低阻特性研究[J]. 化工学报,2021, 72(9): 4511-4522.
    [19] 李娟,朱章钰,翟昊,等. 基于仿生学的强化传热与减阻技术研究进展[J]. 化工进展,2021, 40(5): 2375-2388.
    [20] FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 33-44. doi: 10.1016/j.ijheatmasstransfer.2008.07.006
    [21] BEJAN A. A study of entropy generation in fundamental convective heat transfer[J]. Journal of Heat Transfer, 1979, 101(4): 718-725. doi: 10.1115/1.3451063
    [22] 曲行丽,阎昌琪,范广铭. 微肋管单相对流强化换热数值模拟[J]. 应用科技,2009, 36(4): 65-68. doi: 10.3969/j.issn.1009-671X.2009.04.017
    [23] 曲行丽. 扁管单相对流强化换热研究[D]. 哈尔滨: 哈尔滨工程大学,2009.
  • 加载中
图(11)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-01-17
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回