Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition
-
摘要: 事故容错燃料(ATF)包壳材料是在福岛核事故后为了提高燃料元件抵御严重事故的性能而提出的新一代核燃料概念,与目前的Zr-4合金包壳相比,ATF包壳材料能够在较长时间内抵御事故后果,同时还能保持或提高其在正常运行工况下的性能。基于FRAPTRAN-2.0程序,针对两种ATF包壳材料(FeCrAl和SiC),通过改进包壳材料热物性模型、包壳力学行为模型和氧化模型,开发了适用于ATF包壳材料的燃料棒性能瞬态分析程序。以MT-1实验台架的燃料棒为对象,对其失水事故(LOCA)工况进行计算分析,研究了ATF包壳材料在该事故工况下的热工水力瞬态响应特性。结果表明,相比传统的Zr-4合金包壳,ATF包壳材料不仅可以降低LOCA下的包壳峰值温度,还能延缓或防止包壳失效。
-
关键词:
- 事故容错燃料(ATF) /
- 失水事故(LOCA) /
- FRAPTRAN-2.0 /
- 燃料棒性能分析
Abstract: Accident tolerant fuel (ATF) cladding material is a new generation of nuclear fuel concept proposed after the Fukushima nuclear accident to improve the performance of fuel elements against severe accidents. Compared with the current Zr-4 alloy cladding material, ATF cladding material can resist the consequences of accidents for a long time, while maintaining or improving its performance under normal operating conditions. In this paper, based on the code FRAPTRAN-2.0 and two ATF cladding materials (FeCrAl and SiC), a transient analysis code of fuel rod performance for ATF cladding materials was developed by improving the thermalphysical model, mechanical behavior model and oxidation model of cladding materials. Then the fuel rods of the MT-1 experimental stand were used as the objects for the computational analysis of its LOCA condition, and the thermal-hydraulic transient response characteristics of ATF cladding materials under this condition are studied. The analysis results show that compared with the conventional Zr-4 alloy cladding, the ATF cladding material can not only reduce the peak cladding temperature (PCT) under LOCA, but also delay or prevent cladding failure. -
表 1 氧化动力学方程常数表
Table 1. Constants of Oxidation Kinetic Equation
常数 C-P模型 B-J模型 A 2.252×10−5 m2/s 9.425×10−5 m2/s B 3.5889×104 cal/mol 4.55×104 cal/mol C 1.987 cal/(mol·K) 1.987 cal/(mol·K) 1 cal=4.186 J 表 2 不同研究中单体SiC包壳材料的力学性能
Table 2. Mechanical Properties of Monolayer SiC Cladding Materials
参数名称 CVD SiC CVi SiC NITE SiC UTS/MPa 200~600 209~468 305~710 PLS/MPa 369 90~120, 290~344 137~517 弹性模量E/GPa 460 254~380 160~288 泊松比µ 0.21 0.13 0.13 韦伯模量 7.5 3.7~11 NITE—纳米浸渍与瞬态共晶法;CVi—化学气相渗透法 表 3 MT-1实验燃料棒设计参数
Table 3. MT-1 Test Fuel Rod Design Parameters
设计参数 参数值及类型 包壳材料类型 Zr-4 包壳外直径/cm 0.963 包壳内直径/cm 0.841 间隙宽度/mm 0.0749 芯块外直径/cm 0.826 芯块高度/cm 0.953 燃料棒活性段长度/m 3.658 燃料棒上部腔室长度/cm 24.5 栅格间距/cm 1.275 燃料棒内压/MPa 1.55 表 4 不同包壳材料包壳爆裂时间和位置
Table 4. Time and Location of Cladding Burst for Different Cladding Materials
表 5 包壳峰值温度和相对高度
Table 5. Peak Temperature and Corresponding Height of Cladding
包壳材料 峰值温度/K 相对高度/m Zr-4 1142.5 2.5908 CVD SiC 1058.5 1.9812 FeCrAl 1138.1 2.286 表 6 爆裂节点处不同包壳材料氧化层厚度
Table 6. Oxide Layer Thickness of Different Cladding Materials at Burst Nodes
包壳材料 氧化层厚度(外)/mm 氧化层厚度(内)/mm Zr-4 5.9×10−4 5.1×10−4 CVD SiC 5.6598×10−6 FeCrAl 5.0066×10−8 2.9589×10−8 -
[1] FILBURN T, BULLARD S. Three mile island, Chernobyl and Fukushima[M]. Cham: Springer, 2016: 77-89. [2] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005 [3] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052 [4] YANG H, LI X Q, LIU C X, et al. Hydrothermal corrosion behavior of SiCf/SiC composites candidate for PWR accident tolerant fuel cladding[J]. Ceramics International, 2018, 44(18): 22865-22873. doi: 10.1016/j.ceramint.2018.09.079 [5] KANE K, BELL S, CAPPS N, et al. The response of accident tolerant fuel cladding to LOCA burst testing: a comparative study of leading concepts[J]. Journal of Nuclear Materials, 2023, 574: 154152. doi: 10.1016/j.jnucmat.2022.154152 [6] 黄俊,徐涛,刘俊凯,等. 基于RELAP5的ATF燃料的事故分析程序开发及应用[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,2017. [7] GEELHOOD K J, LUSCHER W G, CUTA J M, et al. FRAPTRAN-2.0: a computer code for the transient analysis of oxide fuel rods: PNNL-19400, Vol. 1 Rev2[R]. Richland: Pacific Northwest National Laboratory, 2016. [8] HAGRMAN D L, REYMANN G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. United States: Idaho National Lab., 1979. [9] STONE J G, SCHLEICHER R, DECK C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 682-697. doi: 10.1016/j.jnucmat.2015.08.001 [10] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016 [11] KATOH Y, SNEAD L L, CHENG T, et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J]. Journal of Nuclear Materials, 2014, 448(1-3): 497-511. doi: 10.1016/j.jnucmat.2013.10.002 [12] 刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001 [13] LAMON J. Properties and characteristics of SiC and SiC/SiC composites[J]. Comprehensive Nuclear Materials: Second Edition, 2020, 7: 400-418. [14] TERRANI K A, PINT B A, PARISH C M, et al. Silicon Carbide Oxidation in Steam up to 2 MPa[J]. Journal of the American Ceramic Society, 2014, 97(8): 2331-52. doi: 10.1111/jace.13094 [15] OPILA E J. Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8): 1238-1248. doi: 10.1111/j.1151-2916.2003.tb03459.x [16] TEDMON C S JR. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8): 766. doi: 10.1149/1.2424115 [17] WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032 [18] TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1): 420-35. [19] MASSEY C P, TERRANI K A, DRYEPONDT S N, et al. Cladding burst behavior of Fe-based alloys under LOCA[J]. Journal of Nuclear Materials, 2016, 470: 128-138. doi: 10.1016/j.jnucmat.2015.12.018 [20] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039 [21] RUSSCHER G E, MARSHALL R K, HESSON G M, et al. LOCA simulation in the NRU reactor: materials test-1: NUREG/CR-2152-V1[R]. Richland: Battelle Pacific Northwest Labs. , 1981.