高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LOCA工况下事故容错燃料对燃料棒性能影响的初步分析研究

王泽吉 郭张鹏 朱奥博 欧阳晓平 牛风雷

王泽吉, 郭张鹏, 朱奥博, 欧阳晓平, 牛风雷. LOCA工况下事故容错燃料对燃料棒性能影响的初步分析研究[J]. 核动力工程, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099
引用本文: 王泽吉, 郭张鹏, 朱奥博, 欧阳晓平, 牛风雷. LOCA工况下事故容错燃料对燃料棒性能影响的初步分析研究[J]. 核动力工程, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099
Wang Zeji, Guo Zhangpeng, Zhu Aobo, Ouyang Xiaoping, Niu Fenglei. Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition[J]. Nuclear Power Engineering, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099
Citation: Wang Zeji, Guo Zhangpeng, Zhu Aobo, Ouyang Xiaoping, Niu Fenglei. Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition[J]. Nuclear Power Engineering, 2024, 45(5): 99-107. doi: 10.13832/j.jnpe.2024.05.0099

LOCA工况下事故容错燃料对燃料棒性能影响的初步分析研究

doi: 10.13832/j.jnpe.2024.05.0099
基金项目: 国家自然科学基金(12275084, 12027813);国家重点研发计划(2022YFB1902503);中央高校基金(2023MS054)
详细信息
    作者简介:

    王泽吉(1992—),男,博士研究生,现主要从事燃料元件设计及性能分析方面的研究,E-mail: wangzj@ncepu.edu.cn

    通讯作者:

    郭张鹏,E-mail: zhangpengguo@ncepu.edu.cn

  • 中图分类号: TL352

Preliminary Analytical Study of the Effect of Accident Tolerant Fuel on Fuel Rod Performance under LOCA Condition

  • 摘要: 事故容错燃料(ATF)包壳材料是在福岛核事故后为了提高燃料元件抵御严重事故的性能而提出的新一代核燃料概念,与目前的Zr-4合金包壳相比,ATF包壳材料能够在较长时间内抵御事故后果,同时还能保持或提高其在正常运行工况下的性能。基于FRAPTRAN-2.0程序,针对两种ATF包壳材料(FeCrAl和SiC),通过改进包壳材料热物性模型、包壳力学行为模型和氧化模型,开发了适用于ATF包壳材料的燃料棒性能瞬态分析程序。以MT-1实验台架的燃料棒为对象,对其失水事故(LOCA)工况进行计算分析,研究了ATF包壳材料在该事故工况下的热工水力瞬态响应特性。结果表明,相比传统的Zr-4合金包壳,ATF包壳材料不仅可以降低LOCA下的包壳峰值温度,还能延缓或防止包壳失效。

     

  • 图  1  FRAPTRAN-2.0程序运行框架图

    Figure  1.  Code Structure of FRAPTRAN-2.0

    图  2  FeCrAl材料与Zr-4材料屈服应力的对比

    RXA Zr-2和SRA Zr-4为锆合金材料;T35Y2、C35M和APM/APMT为FeCrAl合金材料

    Figure  2.  Comparison of Yield Srength between FeCrAl and Zr-4 Alloys

    图  3  基于UTS准则和Tresca准则模拟的FeCrAl包壳爆裂失效时环向应力、棒内压力与实验数据的对比

    Figure  3.  Comparison of Hoop Stress and Rod Internal Pressure at Burst of FeCrAl Cladding Based on UTS and Tresca Failure Criteria with Experimental Data

    图  4  MT-1实验冷却剂质量流量

    Figure  4.  Variation of Coolant Mass Flow of MT-1 Test with Time

    图  5  爆裂节点处不同材料的芯块中心和包壳表面温度

    Figure  5.  Pellet Center and Cladding Surface Temperatures of Different Cladding Materials at Burst Nodes

    图  6  ATF材料和Zr-4合金材料的体积热容

    Figure  6.  Volumetric Heat Capacity of ATF Cladding Materials and Zr-4 Alloy Materials

    图  7  不同材料的包壳峰值温度

    Figure  7.  Peak Cladding Temperatures of Different Cladding Materials

    图  8  爆裂节点处不同材料的包壳环向应变

    Figure  8.  Hoop Strain of Different Cladding Materials at Burst Nodes

    图  9  爆裂节点处不同材料的包壳环向应力

    Figure  9.  Hoop Stress of Different Cladding Materials at Burst Nodes

    图  10  爆裂节点处不同材料的气体间隙宽度

    Figure  10.  Gap Width of Different Cladding Materials at Burst Nodes

    图  11  爆裂节点处不同材料的气体间隙压力

    Figure  11.  Gap Pressure of Different Cladding Materials at Burst Nodes

    图  12  爆裂节点处不同材料的间隙传热系数

    Figure  12.  Gap Heat Transfer Coefficient of Different Cladding Materials at Burst Nodes

    图  13  爆裂节点处不同包壳材料氧化层厚度(外侧)

    Figure  13.  Oxide Layer Thickness of Different Cladding Materials at Burst Nodes

    图  14  CVD SiC氧化层生成和挥发厚度变化

    Figure  14.  Variation of Oxide Layer Generation and Volatilization Thickness of CVD SiC

    表  1  氧化动力学方程常数表

    Table  1.   Constants of Oxidation Kinetic Equation

    常数 C-P模型 B-J模型
    A 2.252×10−5 m2/s 9.425×10−5 m2/s
    B 3.5889×104 cal/mol 4.55×104 cal/mol
    C 1.987 cal/(mol·K) 1.987 cal/(mol·K)
      1 cal=4.186 J
    下载: 导出CSV

    表  2  不同研究中单体SiC包壳材料的力学性能

    Table  2.   Mechanical Properties of Monolayer SiC Cladding Materials

    参数名称 CVD SiC CVi SiC NITE SiC
    UTS/MPa 200~600 209~468 305~710
    PLS/MPa 369 90~120, 290~344 137~517
    弹性模量E/GPa 460 254~380 160~288
    泊松比µ 0.21 0.13 0.13
    韦伯模量 7.5 3.7~11
      NITE—纳米浸渍与瞬态共晶法;‌CVi—化学气相渗透法
    下载: 导出CSV

    表  3  MT-1实验燃料棒设计参数

    Table  3.   MT-1 Test Fuel Rod Design Parameters

    设计参数 参数值及类型
    包壳材料类型 Zr-4
    包壳外直径/cm 0.963
    包壳内直径/cm 0.841
    间隙宽度/mm 0.0749
    芯块外直径/cm 0.826
    芯块高度/cm 0.953
    燃料棒活性段长度/m 3.658
    燃料棒上部腔室长度/cm 24.5
    栅格间距/cm 1.275
    燃料棒内压/MPa 1.55
    下载: 导出CSV

    表  4  不同包壳材料包壳爆裂时间和位置

    Table  4.   Time and Location of Cladding Burst for Different Cladding Materials

    包壳材料 鼓胀时间/s 爆裂时间/s 爆裂位置/m
    Zr-4 60 65 1.9812
    CVD SiC
    FeCrAl 70 75 1.9812
    实验数据[7, 21] 60~95 2.0193
    下载: 导出CSV

    表  5  包壳峰值温度和相对高度

    Table  5.   Peak Temperature and Corresponding Height of Cladding

    包壳材料 峰值温度/K 相对高度/m
    Zr-4 1142.5 2.5908
    CVD SiC 1058.5 1.9812
    FeCrAl 1138.1 2.286
    下载: 导出CSV

    表  6  爆裂节点处不同包壳材料氧化层厚度

    Table  6.   Oxide Layer Thickness of Different Cladding Materials at Burst Nodes

    包壳材料 氧化层厚度(外)/mm 氧化层厚度(内)/mm
    Zr-4 5.9×10−4 5.1×10−4
    CVD SiC 5.6598×10−6
    FeCrAl 5.0066×10−8 2.9589×10−8
    下载: 导出CSV
  • [1] FILBURN T, BULLARD S. Three mile island, Chernobyl and Fukushima[M]. Cham: Springer, 2016: 77-89.
    [2] ZINKLE S J, TERRANI K A, GEHIN J C, et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3): 374-379. doi: 10.1016/j.jnucmat.2013.12.005
    [3] OTT L J, ROBB K R, WANG D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions[J]. Journal of Nuclear Materials, 2014, 448(1-3): 520-533. doi: 10.1016/j.jnucmat.2013.09.052
    [4] YANG H, LI X Q, LIU C X, et al. Hydrothermal corrosion behavior of SiCf/SiC composites candidate for PWR accident tolerant fuel cladding[J]. Ceramics International, 2018, 44(18): 22865-22873. doi: 10.1016/j.ceramint.2018.09.079
    [5] KANE K, BELL S, CAPPS N, et al. The response of accident tolerant fuel cladding to LOCA burst testing: a comparative study of leading concepts[J]. Journal of Nuclear Materials, 2023, 574: 154152. doi: 10.1016/j.jnucmat.2022.154152
    [6] 黄俊,徐涛,刘俊凯,等. 基于RELAP5的ATF燃料的事故分析程序开发及应用[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,2017.
    [7] GEELHOOD K J, LUSCHER W G, CUTA J M, et al. FRAPTRAN-2.0: a computer code for the transient analysis of oxide fuel rods: PNNL-19400, Vol. 1 Rev2[R]. Richland: Pacific Northwest National Laboratory, 2016.
    [8] HAGRMAN D L, REYMANN G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior: NUREG/CR-0497[R]. United States: Idaho National Lab., 1979.
    [9] STONE J G, SCHLEICHER R, DECK C P, et al. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 682-697. doi: 10.1016/j.jnucmat.2015.08.001
    [10] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377. doi: 10.1016/j.jnucmat.2007.05.016
    [11] KATOH Y, SNEAD L L, CHENG T, et al. Radiation-tolerant joining technologies for silicon carbide ceramics and composites[J]. Journal of Nuclear Materials, 2014, 448(1-3): 497-511. doi: 10.1016/j.jnucmat.2013.10.002
    [12] 刘俊凯,张新虎,恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 材料导报,2018, 32(11): 1757-1778. doi: 10.11896/j.issn.1005-023X.2018.11.001
    [13] LAMON J. Properties and characteristics of SiC and SiC/SiC composites[J]. Comprehensive Nuclear Materials: Second Edition, 2020, 7: 400-418.
    [14] TERRANI K A, PINT B A, PARISH C M, et al. Silicon Carbide Oxidation in Steam up to 2 MPa[J]. Journal of the American Ceramic Society, 2014, 97(8): 2331-52. doi: 10.1111/jace.13094
    [15] OPILA E J. Oxidation and volatilization of silica formers in water vapor[J]. Journal of the American Ceramic Society, 2003, 86(8): 1238-1248. doi: 10.1111/j.1151-2916.2003.tb03459.x
    [16] TEDMON C S JR. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8): 766. doi: 10.1149/1.2424115
    [17] WU X, KOZLOWSKI T, HALES J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Annals of Nuclear Energy, 2015, 85: 763-775. doi: 10.1016/j.anucene.2015.06.032
    [18] TERRANI K A, ZINKLE S J, SNEAD L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. Journal of Nuclear Materials, 2014, 448(1): 420-35.
    [19] MASSEY C P, TERRANI K A, DRYEPONDT S N, et al. Cladding burst behavior of Fe-based alloys under LOCA[J]. Journal of Nuclear Materials, 2016, 470: 128-138. doi: 10.1016/j.jnucmat.2015.12.018
    [20] GAMBLE K A, BARANI T, PIZZOCRI D, et al. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions[J]. Journal of Nuclear Materials, 2017, 491: 55-66. doi: 10.1016/j.jnucmat.2017.04.039
    [21] RUSSCHER G E, MARSHALL R K, HESSON G M, et al. LOCA simulation in the NRU reactor: materials test-1: NUREG/CR-2152-V1[R]. Richland: Battelle Pacific Northwest Labs. , 1981.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  7
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-24
  • 修回日期:  2024-04-06
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回