Analysis of Influence of Expansion on Control Rod Drop in Nuclear Reactor at High Temperature
-
摘要: 核反应堆内的高温环境会导致控制棒组件产生热膨胀现象,进而影响控制棒组件的下落时间。为研究热膨胀对控制棒组件下落的影响,建立考虑膨胀变形的控制棒下落流固耦合模型,求解控制棒组件下落过程的动力学方程。采用有限元对导向管和控制棒进行稳态热力耦合分析,得到高温条件下控制棒和导向管的膨胀变形。基于所建立模型比较考虑热膨胀和不考虑热膨胀条件下控制棒的下落动力学过程。分析结果表明,热膨胀现象延迟了控制棒整体下落时间,但对控制棒进入缓冲段入口的时间影响较小,因此在一般情况下热膨胀对落棒时间的影响可以忽略,但在工程中仍需要重视控制棒膨胀引起的后果。本文研究结果对控制棒结构设计以及控制棒堆内落棒时间分析有重要意义。Abstract: The high temperature environment in the nuclear reactor will cause the thermal expansion of the control rod assembly, which will affect the falling time of the control rod assembly. In order to study the effect of thermal expansion on the drop of control rod assemblies, a fluid-structure coupling model for the drop of control rod assemblies was established considering expansion deformation, and the dynamic equations for the drop process of control rod assemblies were solved. The steady state thermodynamic coupling analysis of the guide tube and control rod is performed using finite element method to obtain the expansion deformation of the control rod and guide tube under high temperature conditions. Based on the established analytical model, the dynamic processes of control rod drop with and without expansion is compared. The analysis results show that the thermal expansion phenomenon delays the total drop time of the control rod, but has little impact on the drop time before the buffer section. Therefore, in general, the impact of thermal expansion on the drop time can be ignored, but the consequences caused by the control rod expansion still need to be paid attention to in the engineering design. The conclusion of this paper is important for the design of control rod and the analysis of in-pile control rod drop time.
-
Key words:
- Control rod drop /
- Thermal expansion /
- Finite element /
- Fluid-structure coupling
-
表 1 堆芯结构和流量相关参数
Table 1. Parameters of Core Structure and Flow Rate
参数名 数值 控制棒长度/m 4 控制棒直径/mm 9.7 导向管底部长度/m 0.5 导向管底部内径/mm 10 导向管顶部长度/m 3.5 导向管顶部内径/mm 11.4 侧孔距底部距离/m 0.52 反应堆内每个回路内的流量/(m3·s−1) 1.8×10−3 表 2 热膨胀前后落棒时间相对偏差
Table 2. Relative Deviation of Control Rod Time before and after Thermal Expansion
对比项 热膨胀前 热膨胀后 相对偏差 控制棒进入缓冲段时间 1.4270 s 1.4375 s 0.74% 控制棒整体落棒时间 1.8587 s 1.9197 s 3.28% -
[1] YOON K H, KIM J Y, LEE K H, et al. Control rod drop analysis by finite element method using fluid–structure interaction for a pressurized water reactor power plant[J]. Nuclear Engineering and Design, 2009, 239(10): 1857-1861. doi: 10.1016/j.nucengdes.2009.05.023 [2] PARHIZKARI H, AGHAIE M, ZOLFAGHARI A, et al. Analysis of control rod drop accident in PWRs with multipoint kinetics method[J]. Annals of Nuclear Energy, 2016, 88: 194-203. doi: 10.1016/j.anucene.2015.10.039 [3] KENNEDY G, LAMBERTS D, VAN TICHELEN K, et al. Experimental and numerical study of the MYRRHA control rod system dynamics[C]//Proceedings of 2017 International Congress on Advances in Nuclear Power Plants. Shimbashi, Minato: Atomic Energy Society, 2017: 24-28. [4] 张吉斌,高希龙,何航行,等. 控制棒落棒动力学数值计算[J]. 核动力工程,2020, 41(6): 218-223. [5] 周红,肖志,陶书生,等. 运行核电厂控制棒组件及其驱动机构异常事件的经验反馈[J]. 核安全,2013(1): 19-22,35, doi: 10.16432/j.cnki.1672-5360.2013.01.012. [6] 单秉昆. 核电站控制棒组件(RCCA)肿胀机理分析[J]. 科技视界,2014(35): 320-321. [7] 蔡家藩,陈增武,乔维,等. 核电站反应堆控制棒束组件检查技术应用[C]//中国核学会. 中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第3册). 北京: 原子能出版社,2009: 463-470. [8] 周建钦,梁尚明,赵军. 高温下控制棒驱动机构结构完整性分析[J]. 机械,2018, 45(7): 13-17. [9] HALL M M. Stress state dependence of in-reactor creep and swelling[J]. Journal of Nuclear Materials, 2010, 396(1): 112-118. doi: 10.1016/j.jnucmat.2009.10.063 [10] NIKITIN E, FRIDMAN E. Extension of the reactor dynamics code DYN3D to SFR applications – Part I: thermal expansion models[J]. Annals of Nuclear Energy, 2018, 119: 382-389. doi: 10.1016/j.anucene.2018.05.015 [11] YUN S, MIKHAILOV G, KIM S J, et al. A study on the radial expansion reactivity of a metal-fueled sodium-cooled fast reactor via a physics experiment[J]. Annals of Nuclear Energy, 2021, 153: 108072. doi: 10.1016/j.anucene.2020.108072 [12] 孔珑. 工程流体力学[M]. 北京: 中国电力出版社,2001: 226-231. [13] 赵珂,陈昌义,席炎炎,等. 控制棒下落与流体流动的耦合状态方程及其保辛算法[J]. 应用数学和力学,2022, 43(9): 935-943. [14] 王瑞红,丁向东,肖林,等. 渗氢前后Zr-4合金板的力学性能及有限元模拟[J]. 中国有色金属学报,2002, 12(3): 544-549. [15] 薛淑娟,王云惠,赵文金,等. 锆、锆-4合金及新锆合金的热膨胀[J]. 核动力工程,2004, 25(3): 236-240. [16] 张莉丽. Zr-4合金堆外热物理性能的测量研究[J]. 中国原子能科学研究院年报,1990: 280-282.