高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRANE/EAGLE高保真多物理耦合软件系统的初步工程验证

陈国华 冯进军 陈超 蒋校丰 王涛

陈国华, 冯进军, 陈超, 蒋校丰, 王涛. CRANE/EAGLE高保真多物理耦合软件系统的初步工程验证[J]. 核动力工程, 2024, 45(5): 115-120. doi: 10.13832/j.jnpe.2024.05.0115
引用本文: 陈国华, 冯进军, 陈超, 蒋校丰, 王涛. CRANE/EAGLE高保真多物理耦合软件系统的初步工程验证[J]. 核动力工程, 2024, 45(5): 115-120. doi: 10.13832/j.jnpe.2024.05.0115
Chen Guohua, Feng Jinjun, Chen Chao, Jiang Xiaofeng, Wang Tao. Preliminary Engineering Validation of the High-fidelity Multi-Physical Coupling Code CRANE/EAGLE[J]. Nuclear Power Engineering, 2024, 45(5): 115-120. doi: 10.13832/j.jnpe.2024.05.0115
Citation: Chen Guohua, Feng Jinjun, Chen Chao, Jiang Xiaofeng, Wang Tao. Preliminary Engineering Validation of the High-fidelity Multi-Physical Coupling Code CRANE/EAGLE[J]. Nuclear Power Engineering, 2024, 45(5): 115-120. doi: 10.13832/j.jnpe.2024.05.0115

CRANE/EAGLE高保真多物理耦合软件系统的初步工程验证

doi: 10.13832/j.jnpe.2024.05.0115
详细信息
    作者简介:

    陈国华(1985—),男,硕士研究生,现主要从事反应堆物理数值计算方法研究,E-mail: ghchen@nustarnuclear.com

    通讯作者:

    冯进军,E-mail: fengjinjun2010@163.com

  • 中图分类号: TL329;TL323

Preliminary Engineering Validation of the High-fidelity Multi-Physical Coupling Code CRANE/EAGLE

  • 摘要: 基于采用图形处理单元(GPU)加速的数值反应堆物理程序CRANE和子通道热工水力程序EAGLE,通过源代码层面的直接联合编译形成了一套CRANE/EAGLE高保真多物理耦合软件系统。目前已经对CRANE/EAGLE软件系统开展了大量的验证和确认工作,本文主要介绍对田湾核电站5号机组(M310机组)首循环和田湾核电站4号机组(VVER-1000机组)首循环的验证结果。针对这两个机组的首循环,开展了启动物理参数的计算和以天为单位的运行历史跟踪模拟。计算结果表明,CRANE/EAGLE软件系统不仅具备非常高的计算精度,而且能在小型多GPU计算平台上以分钟级别的时间完成商用压水堆单个状态点的多物理耦合计算。本文所验证的CRANE/EAGLE软件系统已初步具备了工程应用价值。

     

  • 图  1  CRANE/EAGLE软件系统的耦合计算流程

    Figure  1.  Calculation Flow Chart of CRANE/EAGLE

    图  2  CRANE程序建立的M310机组模型

    Figure  2.  M310 Core Model by CRANE

    图  3  M310机组硼降曲线跟踪计算值与测量值的比较

    Figure  3.  Comparation between the Calculated and Measured Values of Boron Letdown Curve of M310

    图  4  M310机组寿期初、寿期中、寿期末组件功率偏差分布

    Figure  4.  Assembly Power Deviation Distribution of BOL, MOL and EOL of M310

    图  5  子通道和单通道模型计算的临界硼浓度偏差

    Figure  5.  Critical Boron Concentration Devation between Sub-Channel and Single-Channel

    图  6  子通道和单通道计算的寿期初、寿期末棒功率偏差分布

    Figure  6.  BOL and EOL Pin Power Distribution Deviation between Sub-Channel and Single-Channel

    图  7  CRANE程序建立的VVER-1000机组模型

    Figure  7.  VVER-1000 Core Model by CRANE

    图  8  VVER-1000机组硼降曲线跟踪计算值与测量值的比较

    Figure  8.  Comparation between the Calculated and Measured Values of Boron Letdown Curve of VVER-1000

    图  9  VVER-1000机组寿期初、寿期中、寿期末组件功率偏差分布

    Figure  9.  Assembly Power Deviation Distribution of BOL, MOL and EOL of VVER-1000

    表  1  M310机组控制棒组积分价值相对偏差

    Table  1.   Relative Deviation of Control Rod Integral Worth of M310

    控制棒组 计算值与测量值相对偏差/% 验收准则
    R 3.0 ±10%
    G1 −0.8
    G2 −1.2
    N1 2.5
    N2 −1.3
    SA 0.1
    SB −1.1
    SC −1.5
    SD 3.2
    下载: 导出CSV

    表  2  VVER-1000机组控制棒组积分价值相对偏差

    Table  2.   Relative Deviation of Control Rod Integral Worth of VVER-1000

    控制棒组 计算值与测量值相对偏差/% 验收准则
    H1 −3.9 ±15%
    H2 −3.8
    H3 −3.9
    H4 −0.2
    H5 −1.5
    H6 −3.8
    H7 −3.9
    H8 −0.6
    H9 −4.2
    H10 −6.4
    下载: 导出CSV
  • [1] GODFREY A T. VERA core physics benchmark progression problem specifications: CASL-U-2012-0131-004[R]. U.S.: Oak Ridge National Laboratory, 2014.
    [2] 陈国华,蒋校丰,王涛,等. 基于GPU的数值反应堆程序CRANE研发[C]//第十九届反应堆数值计算与粒子输运学术会议论文集,上海,中国, 2023.
    [3] YAMAMOTO A. Evaluation of background cross section for heterogeneous and complicated geometry by the enhanced neutron current method[J]. Journal of Nuclear Science and Technology, 2008, 45(12): 1287-1292. doi: 10.1080/18811248.2008.9711916
    [4] STAMM'LER R J J, ABBATE M J. Methods of steady-state reactor physics in nuclear design[M]. London: Academic Press, 1983.
    [5] TANG C T, ZHANG S H. Development and verification of an MOC code employing assembly modular ray tracing and efficient acceleration techniques[J]. Annals of Nuclear Energy, 2009, 36(8): 1013-1020. doi: 10.1016/j.anucene.2009.06.007
    [6] CHOI N, JOO H G. Stability enhancement of planar transport solution based whole-core calculation employing augmented axial method of characteristics[J]. Annals of Nuclear Energy, 2020, 143: 107440. doi: 10.1016/j.anucene.2020.107440
    [7] MARIA P. Higher-order chebyshev rational approximation method and application to burnup equations[J]. Nuclear Science and Engineering, 2016, 182(3): 297-318. doi: 10.13182/NSE15-26
    [8] CARPENTER D C, WOLF III J H. The log linear rate constant power depletion method[C]//PHYSOR 2010. U.S.: American Nuclear Society, Inc., 2010.
    [9] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-07-11
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回