Preliminary Engineering Validation of the High-fidelity Multi-Physical Coupling Code CRANE/EAGLE
-
摘要: 基于采用图形处理单元(GPU)加速的数值反应堆物理程序CRANE和子通道热工水力程序EAGLE,通过源代码层面的直接联合编译形成了一套CRANE/EAGLE高保真多物理耦合软件系统。目前已经对CRANE/EAGLE软件系统开展了大量的验证和确认工作,本文主要介绍对田湾核电站5号机组(M310机组)首循环和田湾核电站4号机组(VVER-1000机组)首循环的验证结果。针对这两个机组的首循环,开展了启动物理参数的计算和以天为单位的运行历史跟踪模拟。计算结果表明,CRANE/EAGLE软件系统不仅具备非常高的计算精度,而且能在小型多GPU计算平台上以分钟级别的时间完成商用压水堆单个状态点的多物理耦合计算。本文所验证的CRANE/EAGLE软件系统已初步具备了工程应用价值。Abstract: Based on the numerical reactor physical code CRANE and sub-channel thermal hydraulic code EAGLE accelerated by GPU, a set of CRANE/EAGLE high fidelity multi-physical coupling software system was developed through direct joint compilation at the source code level. A large amount of verification and validation work has been carried out on the CRANE/EAGLE system. This paper mainly introduces the verification results of the first cycle of Tianwan Unit 5 (M310 reactor) and Unit 4 (VVER-1000 reactor). According to the first cycle of these two units, the calculation of starting physical parameters and the tracking simulation of operation history in days are carried out. The numerical results show that the CRANE/EAGLE code system not only has high calculation accuracy, but also can complete the multi-physics coupling calculation of a single state point of a commercial pressurized water reactor in minutes on a small multi-GPU computing platform. The CRANE/EAGLE software system verified in this paper has preliminary engineering application value.
-
Key words:
- CRANE /
- EAGLE /
- GPU /
- High-fidelity /
- Multi-physics /
- Engineering validation
-
表 1 M310机组控制棒组积分价值相对偏差
Table 1. Relative Deviation of Control Rod Integral Worth of M310
控制棒组 计算值与测量值相对偏差/% 验收准则 R 3.0 ±10% G1 −0.8 G2 −1.2 N1 2.5 N2 −1.3 SA 0.1 SB −1.1 SC −1.5 SD 3.2 表 2 VVER-1000机组控制棒组积分价值相对偏差
Table 2. Relative Deviation of Control Rod Integral Worth of VVER-1000
控制棒组 计算值与测量值相对偏差/% 验收准则 H1 −3.9 ±15% H2 −3.8 H3 −3.9 H4 −0.2 H5 −1.5 H6 −3.8 H7 −3.9 H8 −0.6 H9 −4.2 H10 −6.4 -
[1] GODFREY A T. VERA core physics benchmark progression problem specifications: CASL-U-2012-0131-004[R]. U.S.: Oak Ridge National Laboratory, 2014. [2] 陈国华,蒋校丰,王涛,等. 基于GPU的数值反应堆程序CRANE研发[C]//第十九届反应堆数值计算与粒子输运学术会议论文集,上海,中国, 2023. [3] YAMAMOTO A. Evaluation of background cross section for heterogeneous and complicated geometry by the enhanced neutron current method[J]. Journal of Nuclear Science and Technology, 2008, 45(12): 1287-1292. doi: 10.1080/18811248.2008.9711916 [4] STAMM'LER R J J, ABBATE M J. Methods of steady-state reactor physics in nuclear design[M]. London: Academic Press, 1983. [5] TANG C T, ZHANG S H. Development and verification of an MOC code employing assembly modular ray tracing and efficient acceleration techniques[J]. Annals of Nuclear Energy, 2009, 36(8): 1013-1020. doi: 10.1016/j.anucene.2009.06.007 [6] CHOI N, JOO H G. Stability enhancement of planar transport solution based whole-core calculation employing augmented axial method of characteristics[J]. Annals of Nuclear Energy, 2020, 143: 107440. doi: 10.1016/j.anucene.2020.107440 [7] MARIA P. Higher-order chebyshev rational approximation method and application to burnup equations[J]. Nuclear Science and Engineering, 2016, 182(3): 297-318. doi: 10.13182/NSE15-26 [8] CARPENTER D C, WOLF III J H. The log linear rate constant power depletion method[C]//PHYSOR 2010. U.S.: American Nuclear Society, Inc., 2010. [9] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048