高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡条件下熔融池传热特性研究

罗思民 展德奎 陈鹏

罗思民, 展德奎, 陈鹏. 振荡条件下熔融池传热特性研究[J]. 核动力工程, 2024, 45(5): 128-135. doi: 10.13832/j.jnpe.2024.05.0128
引用本文: 罗思民, 展德奎, 陈鹏. 振荡条件下熔融池传热特性研究[J]. 核动力工程, 2024, 45(5): 128-135. doi: 10.13832/j.jnpe.2024.05.0128
Luo Simin, Zhan Dekui, Chen Peng. Research on Heat Transfer Characteristics of Corium Pool Under Oscillating Conditions[J]. Nuclear Power Engineering, 2024, 45(5): 128-135. doi: 10.13832/j.jnpe.2024.05.0128
Citation: Luo Simin, Zhan Dekui, Chen Peng. Research on Heat Transfer Characteristics of Corium Pool Under Oscillating Conditions[J]. Nuclear Power Engineering, 2024, 45(5): 128-135. doi: 10.13832/j.jnpe.2024.05.0128

振荡条件下熔融池传热特性研究

doi: 10.13832/j.jnpe.2024.05.0128
基金项目: 国家重点研发计划(2019YFB1900702)
详细信息
    作者简介:

    罗思民(1993—),男,工程师,现主要从事核电厂安全分析与严重事故方面的研究,E-mail: luo_simin@foxmail.com

  • 中图分类号: TL334

Research on Heat Transfer Characteristics of Corium Pool Under Oscillating Conditions

  • 摘要: 为获得振荡条件下熔融池的传热特性,本研究以海洋小型反应堆(简称海洋小堆)双层熔融池为对象开展实验研究。实验采用氟化液FC-40和水分别模拟熔融池的氧化层和金属层,获得了不同振荡条件下熔融池的温度场以及传热量的瞬态变化情况。实验结果显示,振荡条件在运动初始阶段对熔融池的影响最为剧烈,随着振荡运动的持续,熔融池会达到热平衡准稳态。一般情况下,振荡条件下熔融池的温度分层减弱,整体温度较静止条件下的温度低,且向冷却壁面的传热量增大。在相同的高强度振荡条件下,纵向振荡的影响比横向振荡更为剧烈,而在低强度振荡条件下,纵向振荡的影响可以忽略。此外,本研究提出了一个新的无量纲参数Lo来表征振荡影响强度,该参数表示在振荡条件下,特征振荡附加力与流体的特征剪切力之比,可用于量化在相同振荡方向条件下不同振荡强度的影响。本研究成果可为海洋小堆的熔融物堆内滞留(IVR)分析和安全系统的设计提供有价值的参考。

     

  • 图  1  实验系统示意图

    Figure  1.  Experimental System

    图  2  加热棒布置图 mm

    Figure  2.  Arrangement of Heating Rods

    图  3  热电偶布置图 mm

    Figure  3.  Arrangement of Thermocouples

    图  4  静态高度50 mm处热电偶的温度变化

    Figure  4.  Temperature Variations at the Static Height of 50 mm

    图  5  静态高度150 mm处热电偶的温度变化

    Figure  5.  Temperature Variations at the Static Height of 150 mm

    图  6  静态高度210 mm处热电偶的温度变化

    Figure  6.  Temperature Variations at the Static Height of 210 mm

    图  7  横向不同振荡强度下熔融池温度对比

    hi-static——静止条件下实验段内第i层热电偶距离其内部空腔底部的高度,h1-static=50 mm,h2-static=150 mm,h3-static=210 mm

    Figure  7.  Temperature Comparison under Oscillation with Different Intensities in Lateral Direction

    图  8  高强度纵向振荡条件下的温度变化

    Figure  8.  Temperature Variation under High-intensity Vertical Oscillation Condition

    图  9  高强度横向振荡条件下传热量的瞬态变化

    Figure  9.  Transient Variation of Heat Transfer Capacity under High-intensity Lateral Oscillation Condition

    图  10  横向振荡条件下传热量的瞬态变化

    Figure  10.  Transient Variation of Heat Transfer Capacity under Low-intensity Lateral Oscillation Condition

    图  11  高强度纵向振荡条件下的传热量瞬态变化

    Figure  11.  Transient Variation of Heat Transfer Capacity under High-intensity Vertical Oscillation Condition

    表  1  热电偶位置与编号

    Table  1.   Thermocouples’ Locations and Numbers

    编号 距底部
    高度/mm
    距中轴线
    距离d/mm
    编号 距底部
    高度/mm
    距中轴线
    距离d/mm
    PT1-1 50 −190 PT2-5 150 420
    PT1-2 50 −70 PT3-1 210 −490
    PT1-3 50 70 PT3-2 210 −350
    PT1-4 50 190 PT3-3 210 −70
    PT2-1 150 −420 PT3-4 210 70
    PT2-2 150 −280 PT3-5 210 350
    PT2-3 150 0 PT3-6 210 490
    PT2-4 150 280
      注:①负值表示在实验段中轴线左侧,正值表示在中轴线右侧,零则表示在中轴线上,如图3所示
    下载: 导出CSV

    表  2  模拟物与熔融物的物性对比

    Table  2.   Comparison of Properties between the Simulants and the Corium

    模拟物物性参数(25℃) FC-40
    (模拟氧化层)
    水(模拟金属层) 物性比
    密度ρ/(kg·m−3) 1855 997 0.54
    动力粘度μ/(Pa·s) 4.10×10−3 9.03×10−4 0.22
    定压比热容cp/(J·kg−1·K−1) 1100 4178 3.80
    导热系数λ/(W·m−1·K−1) 0.065 0.609 9.37
    热膨胀系数β/K−1 1.2×10−3 2.57×10−4 0.21
    熔融物物性参数[14] 氧化层 金属层 物性比
    密度ρ /(kg·m−3) 8196.41 6818.50 0.83
    动力粘度μ/(Pa·s) 8.12×10−3 3.01×10−3 0.37
    定压比热容cp(J·kg−1·K−1) 532.67 758.27 1.42
    导热系数λ/(W·m−1·K−1) 4.89 25.13 5.14
    热膨胀系数β/K−1 1.05×10−4 1.05×10−4 1.00
      注:①物性比表示模拟物或熔融物中的金属层与氧化层的物性之比
    下载: 导出CSV

    表  3  实验工况设置

    Table  3.   Experimental Conditions

    工况编号 振荡方向 加速度幅值amax/(m·s−2) 频率f/Hz
    工况1 横向(X轴) 5.00 2.04
    工况2 横向(X轴) 0.55 0.20
    工况3 纵向(Z轴) 5.00 2.04
    工况4 纵向(Z轴) 0.55 0.20
      注:表中的X轴与Z轴表示的方向与图1一致
    下载: 导出CSV

    表  4  实验工况对应的无量纲参数Lo

    Table  4.   Dimensionless Parameter Lo for Experimental Conditions

    工况编号Lo
    工况122768.6
    工况2245.5
    工况322768.6
    工况4245.5
    下载: 导出CSV

    表  5  不同振荡条件下的熔融池传热特性

    Table  5.   Heat Transfer Characteristics of Corium Pool under Different Oscillating Conditions

    工况编号 Lo 最高温度比
    Tosc/Tstatic
    峰值传热比
    Qp/Qstatic
    稳态传热比
    Qosc/Qstatic
    工况1 22768.6 0.547 3.76 1.26
    工况2 245.5 0.798 1.56 1.23
    工况3 22768.6 0.403 8.80 1.23
    工况4 245.5 ≈1 ≈1 ≈1
    下载: 导出CSV
  • [1] ZHANG Y P, SU G H, QIU S Z, et al. A simple novel and fast computational model for the LIVE-L4[J]. Progress in Nuclear Energy, 2013, 68: 20-30. doi: 10.1016/j.pnucene.2013.04.009
    [2] KYMÄLÄINEN O, TUOMISTO H, HONGISTO O, et al. Heat flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
    [3] BONNET J M, SEILER J M. Thermal hydraulic phenomena in corium pools: the BALI experiment[C]//7th International Conference on Nuclear Engineering. Tokyo: Japan Society of Mechanical Engineers, 1999.
    [4] Gubaidullin AA, Sehgal BR. SIMECO tests in a melt stratified pool[C]. The 10th International Conference on Nuclear Engineering (ICONE-10), Arlington, USA, 2002: 935-945.
    [5] FLUHRER B, MIASSOEDOV A, CRON T, et al. The LIVE-L1 and LIVE-L3 experiments on melt behaviour in RPV lower head: FZKA 7419[R]. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 2008.
    [6] MIASSOEDOV A, CRON T, FOIT J, et al. Results of the LIVE-L1 experiment on melt behaviour in RPV lower head performed within the LACOMERA project at the Forschungszentrum Karlsruhe[C]//15th International Conference on Nuclear Engineering (ICONE-15). Tokyo: Japan Society of Mechanical Engineers, 2007: 22-26.
    [7] GAUS-LIU X, MIASSOEDOV A, CRON T, et al. Test and simulation results of LIVE-L4 + LIVE-L5L: KIT-SR-7593[R]. Germany: Karlsruhe Institute of Technology, 2011.
    [8] ZHANG L T, ZHANG Y P, ZHOU Y K, et al. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers[J]. Annals of Nuclear Energy, 2016, 87: 81-88. doi: 10.1016/j.anucene.2015.08.021
    [9] ZHANG Y P, ZHANG L T, ZHOU Y K, et al. Natural convection heat transfer test for in-vessel retention at prototypic Rayleigh numbers–results of COPRA experiments[J]. Progress in Nuclear Energy, 2016, 86: 80-86. doi: 10.1016/j.pnucene.2015.10.014
    [10] LUO S M, ZHANG Y P, ZHOU Y K, et al. COPRA experiment and numerical research on the behavior of internally-heated melt pool with eutectic salt[J]. Applied Thermal Engineering, 2018, 140: 313-324. doi: 10.1016/j.applthermaleng.2018.05.041
    [11] ZHOU Y K, ZHANG Y P, LUO S M, et al. Results of simulant effect on large corium pool behavior based on COPRA facility[J]. Progress in Nuclear Energy, 2018, 108: 398-408. doi: 10.1016/j.pnucene.2018.06.018
    [12] ZHANG L T, LUO S M, ZHANG Y P, et al. Large eddy simulation on turbulent heat transfer in reactor vessel lower head corium pools[J]. Annals of Nuclear Energy, 2018, 111: 293-302. doi: 10.1016/j.anucene.2017.08.055
    [13] LUO S M, ZHANG Y P, ZHANG D L, et al. Numerical analysis of simulant effect on natural convection characteristics in corium pools[J]. Applied Thermal Engineering, 2019, 156: 730-740. doi: 10.1016/j.applthermaleng.2019.04.101
    [14] ZHANG L T, ZHOU Y K, LUO S M, et al. Large eddy simulation for the thermal behavior of one-layer and two-layer corium pool configurations in HPR1000 reactor[J]. Applied Thermal Engineering, 2018, 145: 38-47. doi: 10.1016/j.applthermaleng.2018.09.019
    [15] LUO S M, ZHANG Y P, ZHANG D L, et al. Convection of internal-heated two-layer fluids with deformable interface under swinging motion conditions[J]. Applied Thermal Engineering, 2020, 167: 114755. doi: 10.1016/j.applthermaleng.2019.114755
    [16] LUO S M, CHEN P, BAI J Y, et al. Experimental research on the influence of rolling motions on the convection behaviors inside two-layer corium pools[J]. Progress in Nuclear Energy, 2020, 128: 103466. doi: 10.1016/j.pnucene.2020.103466
    [17] LUO S M, WANG X A, ZHANG Y P, et al. Numerical research on melt pool flow characteristics under rolling condition[C]//Proceedings of the 26th International Conference on Nuclear Engineering. London: ASME, 2018.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  6
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-19
  • 修回日期:  2023-11-28
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回