Scaling Experimental Design of Horizontal Steam Generator in NHR200-II
-
摘要: 为拓宽200 MW低温核供热堆(NHR200-Ⅱ)的应用范围和提高其经济性,重新对其中间回路进行设计,并提出包含卧式蒸汽发生器(HSG)在内的新型过热蒸汽供应系统。因原型尺度的验证试验成本高、周期长,故采用多级双层比例分析(H2TS)方法对HSG内的两相自然循环开展比例模化分析研究,并通过理论推导给出了在等物性条件下的比例分析准则和不同比例条件下的比例数值。原型和模型均选用水作为试验工质,再结合RELAP5程序对原型和模型进行仿真建模。仿真计算结果表明模型和原型的关键参数比例关系符合理论推导结果。综合考虑试验经济性、准确性、安全性等因素,最终确定模型和原型的长度比例为1∶4作为后续验证试验的长度比值,对应的功率比为1∶96。
-
关键词:
- 200 MW低温核供热堆(NHR200-Ⅱ) /
- 卧式蒸汽发生器(HSG) /
- 比例分析 /
- 仿真
Abstract: To broaden the application range and improve the economic feasibility of 200 MW Low-Temperature Nuclear Heating Reactor (NHR200-Ⅱ), a redesign of its intermediate loop has been proposed, including a new superheated steam supply system that incorporates horizontal steam generators (HSG). Due to the high cost and long period of prototype scale verification tests, a scaling modeling analysis of the two-phase natural circulation within the HSG was employed using the Hierarchical Two Tiered Scaling (H2TS) method. Theoretical derivations provided scaling analysis criteria under isothermal conditions and scaling numerical values under various scaling conditions. Both the prototype and the model employed water as the test fluid, and numerical modeling of the prototype and the model was conducted by using the RELAP5 code. The numerical calculations indicated that the key parameters’ proportional relationships between the model and the prototype were consistent with the theoretically derived results. Considering factors such as test economy, accuracy, and safety, a 1:4 scale model-to-prototype length ratio was ultimately selected as the scaling factor for subsequent verification tests, corresponding to a power ratio of 1:96. -
表 1 不同长度比例条件的关键参数比例汇总
Table 1. Scaling Summary of Key Parameters for Different Length Scale Ratio Conditions
长度比lR 1∶2 1∶3 1∶4 时间比τR 1∶1.41 1∶1.73 1∶2 流速比uR 1∶1.41 1∶1.73 1∶2 功率比qR 1∶21.99 1∶54.51 1∶96 面积比aR 1∶15.55 1∶31.47 1∶48 质量流速比GR 1∶21.99 1∶54.51 1∶96 -
[1] 郝文涛,张亚军. 低温供热堆研究进展[J]. 中国核电,2019, 12(5): 518-521. [2] 杨星团,姜胜耀,张佑杰. 核供热堆条件下自然循环两相漂移流模型参数的确定[J]. 核动力工程,2003, 24(S2): 16-20. [3] 李卫华,张亚军,郭吉林,等. 一体化核供热堆Ⅱ型的开发及应用前景初步分析[J]. 原子能科学技术,2009, 43(S2): 215-218. [4] 崔保元,丁训慎. 苏联压水堆卧式蒸汽发生器[J]. 核动力工程,1985, 6(1): 10-19. [5] 赵二雷,李朋洲,彭兴建,等. 新型蒸汽发生器综合性能实验研究[J]. 原子能科学技术,2018, 52(5): 868-874. doi: 10.7538/yzk.2018.52.05.0868 [6] 杨晔,隋增光,董世昌,等. 自然循环蒸汽发生器比例分析[C]//第十五届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室学术年会论文集. 荣成: 中国核学会核能动力分会反应堆热工流体专业委员会,中核核反应堆热工水力技术重点实验室,2023. [7] ISHII M. Thermally induced flow instabilities in two-phase mixtures in thermal equilibrium[D]. United States: Georgia Institute of Technology, 1971. [8] ZUBER N, WILSON G E, ISHII M, et al. An integrated structure and scaling methodology for severe accident technical issue resolution: Development of methodology[J]. Nuclear Engineering and Design, 1998, 186(1-2): 1-21. doi: 10.1016/S0029-5493(98)00215-5 [9] REYES JR J N, HOCHREITER L. Scaling analysis for the OSU AP600 test facility (APEX)[J]. Nuclear Engineering and Design, 1998, 186(1-2): 53-109. doi: 10.1016/S0029-5493(98)00218-0 [10] 房芳芳,杨福明,郝博涛,等. ACME试验台架典型小破口工况试验及数值分析[J]. 原子能科学技术,2017, 51(8): 1393-1399. doi: 10.7538/yzk.2017.51.08.1393