Research on Nuclear Power System Modeling and Control Methods Based on APROS
-
摘要: 随着核电系统建模日益朝着准确化、精细化方向发展,对三维堆芯与热工水力模型耦合的研究也逐渐增多,这为控制系统的设计提供了更好的模型基础。本研究采用APROS软件对VVER-1000反应堆进行了三维堆芯与热工水力耦合建模,并设计了基于模型预测控制(MPC)的负荷跟踪控制系统和其他控制系统;随后利用稳态和瞬态仿真结果对该模型进行了验证,结果表明该模型仿真效果良好;利用三维堆芯可视化的优点,进一步验证了MPC负荷跟踪控制器的性能和安全性。这一研究不仅为核电系统研究提供了模型基础,也为先进功率控制系统的安全性分析提供了实践经验。
-
关键词:
- 核电系统建模 /
- 三维堆芯 /
- 模型预测控制(MPC) /
- 负荷跟踪控制系统 /
- APROS
Abstract: As nuclear power system modeling increasingly moves towards greater accuracy and refinement, research on the coupling of three-dimensional core and thermal-hydraulic models has also grown, which provides a better model foundation for the design of control systems. In this study, the APROS software was used to model the coupling of a three-dimensional core and thermal hydraulics for VVER-1000. A load-following control system based on model predictive control (MPC) and other control systems were designed. The model was then verified using steady-state and transient simulation results, which showed that the model simulated effectively. Taking advantage of the three-dimensional core visualization, the performance and safety of the MPC load-following controller were further validated. This research not only provides a model foundation for studies on nuclear power systems but also offers practical experience for the safety analysis of advanced power control systems.-
Key words:
- Nuclear power system modeling /
- Three-dimensional core /
- MPC /
- Load-following control system /
- APROS
-
表 1 稳态结果对比验证(满功率)
Table 1. Comparison and Verification of Steady-State Results (Full Power)
参数名称 设计值[11] 仿真值 误差/% 堆芯额定热功率/MW 3000.00 2998.88 0.037 冷却剂额定流量/(m3·h−1) 86000.00 85146.77 0.990 堆芯的冷却剂平均温升/℃ 30.3 30.5 0.660 蒸汽产量/(kg·s−1) 1633.20 1616.21 1.040 蒸汽压力/MPa 6.37 6.20 2.670 蒸汽温度/℃ 278.5 277.0 0.540 冷却剂堆芯入口温度/℃ 291.0 288.1 0.990 冷却剂堆芯出口温度/℃ 321.0 318.6 0.750 一回路冷却剂压力/MPa 15.70 15.71 0.064 二回路给水温度/℃ 220.0 220.0 0.000 稳压器的蒸汽温度/℃ 346.0 345.8 0.058 -
[1] 田培妤,李毅,梁铁波,等. 基于APROS的核动力系统建模与仿真研究[J]. 核动力工程,2022, 43(4): 154-161. [2] GRUNDMANN U, KLIEM S, LUCAS D, et al. Coupling of the thermohydraulic code ATHLET with the neutron kinetic core model DYN3D: CONF-950420[R]. United States: U.S. Department of Energy, 1996. [3] 朱彧. 基于APROS Nuclear的VVER-440型反应堆堆芯仿真研究[D]. 重庆: 重庆大学,2018. [4] 刘庆. 大型压水堆核电机组一回路系统建模研究[D]. 保定: 华北电力大学,2017. [5] 毕春雨. 压水堆核电机组建模仿真与电网接入影响[D]. 上海: 上海交通大学,2018. [6] MIGLIERINI B, MAZZINI G, RUščÁK M. 3D neutronic analysis of VVER1000/V-320 using PARCS code[C]//Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering. Brno-Bystrc: IEEE, 2014: 727-731. [7] 耿鹏程,史长青,孔祥松,等. 基于SPSA的蒸汽发生器液位MPC系统性能优化方法研究[J]. 核动力工程,2022, 43(5): 168-175. [8] 段宇,马敏阳,薛锐. 改进免疫PID核电站稳压器控制系统仿真研究[J]. 计算机仿真,2022, 39(8): 68-71,85. [9] CHENG S Y, SHEN B C, PENG M J, et al. Research on coordinated control in nuclear power plant[C]//Proceedings of 2009 International Conference on Machine Learning and Cybernetics. Hebei:IEEE, 2009: 3622-3627. [10] 吴小胜,黄晓鹏. 计算流体力学基础[M]. 北京: 北京理工大学出版社,2021:22-28. [11] 蒋国元. WWER-1000核电站设备与系统[M]. 北京: 原子能出版社,2009:4-8. [12] PUSKA E K, JUKKA RINTALA, KURKI J, et al. Three-dimensional neutronics model user’s guide[Z]. VTT Technical Research Centre of Finland, 2022. [13] 席裕庚,李德伟,林姝. 模型预测控制——现状与挑战[J]. 自动化学报,2013, 39(3): 222-236. [14] KOZMENKOV Y, KLIEM S, GRUNDMANN U, et al. Calculation of the VVER-1000 coolant transient benchmark using the coupled code systems DYN3D/RELAP5 and DYN3D/ATHLET[J]. Nuclear Engineering and Design, 2007, 237(15-17): 1938-1951. doi: 10.1016/j.nucengdes.2007.02.021 [15] 张建民. 核反应堆控制[M]. 西安: 西安交通大学出版社,2002:28-32.