Research on Underwater Laser Welding System and Welding Process of S32101 Duplex Stainless Steel Cladding in Spent Fuel Pool
-
摘要: 为了实现核电站乏燃料水池覆面缺陷水下高质量修复,基于水下局部干法激光焊接技术,研制了集移动定位系统、水下激光焊接-视觉-送丝一体化设备以及移动气罩的水下激光焊接维修系统,并利用该系统对三代核电乏燃料水池覆面(S32101双相不锈钢)进行了水下焊接工艺优化试验研究。结果表明:①均流管结合坡口同步吹扫的排水工艺可有效降低水分子对于焊缝成形的影响;②氮气作为双相不锈钢水下焊接的保护气体,可以提升熔覆层和热影响区的奥氏体含量;③较高的激光功率可以减少焊接缺陷的产生,提高水下局部干法激光焊接的稳定性。焊接试件的无损检测结果和理化性能满足乏燃料水池建造焊接标准要求,证明了该水下激光焊接维修系统与焊接工艺的可行性及可靠性。
-
关键词:
- 水下局部干法焊接 /
- 水下激光焊接维修系统 /
- 双相不锈钢 /
- 焊接工艺
Abstract: In order to achieve high-quality underwater repair of spent fuel pool cladding defects in nuclear power plants, an underwater laser welding system with mobile positioning system, underwater laser-vision-wire feeding integrated equipment and mobile gas hood was developed based on underwater local dry laser welding technology. The underwater laser welding system was used to optimize the underwater welding process of the third generation nuclear spent fuel pool steel cladding (S32101 duplex stainless steel). The results show that the influence of water molecules on weld formation can be effectively reduced by using the drainage technology of equalizing flow pipe and simultaneous purging of groove. Using nitrogen as the protective gas for underwater welding of duplex stainless steel can increase the austenite content in the cladding layer and heat affected zone. The welding defects can be reduced by use of higher laser power, thus improving the stability of underwater local dry laser welding. The results of non-destructive testing and physical and chemical properties of welded specimens meet the requirements of welding standards for spent fuel pool construction, which proves the feasibility and reliability of the underwater laser welding system and welding process. -
表 1 母材与焊丝化学成分 %
Table 1. Chemical Compositions of Base Metal and Filler Wire
材料 C Si Mn Cr Mo Ni N Fe S32101 0.023 0.59 4.90 21.50 0.26 1.62 0.21 余量 ER-2209 0.022 0.35 1.59 22.56 3.05 7.62 0.15 余量 表 2 无损检测与性能检测结果
Table 2. Resultof Non-destructive Test and Performance Test
序号 检测项目 验收标准 检测结果 1 渗透检测 AWS D1.6/D1.6M—
2017《不锈钢焊接规范》符合标准要求 2 超声检测 符合标准要求 3 射线检测 符合标准要求 4 弯曲试验 GB/T 2653—2008
《焊接接头弯曲试验
方法》180°面弯和背弯后未发现明显裂纹 5 −40℃
冲击GB/T 2650—2022《金属材料焊缝破坏性试验 冲击试验》冲击功≥16.2 J HAZ平均冲击功33.0 J WM中心平均冲击功54.1 J 6 130℃
拉伸GB/T 2651—2008《焊
接接头拉伸试验方法》
130℃抗拉强度≥568 MPa;室温抗拉强度
≥650 MPa591 MPa 7 室温
拉伸776 MPa 8 晶间腐蚀 GB/T 4334—2020《金属和合金的腐蚀 奥氏体及铁素体-奥氏体(双相)不锈钢晶间腐蚀试验方法》 晶间腐蚀后90°弯曲,10倍放大镜观察无腐蚀裂纹 9 铁素体含量 NB/T 20277—2014
《A240(S32101)双相不锈钢焊接规范》35%~65%WM:40.5% HAZ:41.4% -
[1] 郭辉. 压水堆核电站乏燃料水池自动焊工艺研究与应用[J]. 电焊机,2019, 49(4): 274-278,282. [2] 杨海峰,邵增,霍小东. 乏燃料贮存水池失冷条件下的临界安全研究[J]. 核科学与工程,2016, 36(5): 709-714,722. doi: 10.3969/j.issn.0258-0918.2016.05.021 [3] 赵迪,李光福,钟志民. 核电厂水池用不锈钢的腐蚀问题及相关研究[J]. 腐蚀与防护,2020, 41(9): 10-15. doi: 10.11973/fsyfh-202009002 [4] 王宇欣,胡月飞,高宇,等. 核电厂不锈钢覆面焊接模拟件腐蚀行为研究[J]. 核动力工程,2022, 43(3): 214-219. [5] COPINGER D A, OLAND C B, NAUS D J. A summary of aging effects and their management in reactor spent fuel pools, refueling cavities, Tori, and safety-related concrete structures: NUREG/CR-7111[R]. Washington: U. S. NRC, 2012: 85-93. [6] 操丰,方江,唐世延,等. 核电厂换料水池304L不锈钢覆面开裂原因分析[J]. 核动力工程,2014, 35(2): 150-153. [7] SUN Z Q, YIN S H, CHEN Z B, et al. Analysis of the application of laser welding technology on maintenance of the underwater components of nuclear power station[J]. IOP Conference Series: Materials Science and Engineering, 2020, 730: 012008. doi: 10.1088/1757-899X/730/1/012008 [8] 闫国华. 反应堆压力容器接管安全端焊缝内壁水下干式修复焊技术研究[J]. 核科学与工程,2019, 39(6): 900-904. doi: 10.3969/j.issn.0258-0918.2019.06.006 [9] 马兆炫,刘一搏,王建峰,等. 双相不锈钢水下局部干法TIG焊接工艺[J]. 机械工程学报,2022, 58(4): 48-54. [10] LAI R, CAI Y, WU Y, et al. Influence of absorbed nitrogen on microstructure and corrosion resistance of 2205 duplex stainless steel joint processed by fiber laser welding[J]. Journal of Materials Processing Technology, 2016, 231: 397-405. doi: 10.1016/j.jmatprotec.2016.01.016 [11] KESKITALO M, MÄNTYJÄRVI K, SUNDQVIST J, et al. Laser welding of duplex stainless steel with nitrogen as shielding gas[J]. Journal of Materials Processing Technology, 2015, 216: 381-384. doi: 10.1016/j.jmatprotec.2014.10.004 [12] 刘俊,曾超,赵林烨. 焊接工艺对双相钢焊缝宏观形貌及组织性能的影响[J]. 现代制造技术与装备,2021, 57(9): 55-59. doi: 10.3969/j.issn.1673-5587.2021.09.022 [13] SUN K, ZENG M, SHI Y H, et al. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints[J]. Journal of Materials Processing Technology, 2018, 256: 190-201. doi: 10.1016/j.jmatprotec.2018.02.018 [14] RAMIREZ A J, LIPPOLD J C, BRANDI S D. The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels[J]. Metallurgical and Materials Transactions A, 2003, 34(8): 1575-1597. doi: 10.1007/s11661-003-0304-9 [15] LIPPOLD J C, KOTECKI D J. Welding metallurgy and weldability of stainless steels[M]. Hoboken: John Wiley, 2005: 357-358.