Application of Orthogonal Experimental Design in Fuel Rod Test Case Design
-
摘要: 为了评估参数不确定度给燃料元件性能带来的影响,需要对设计阶段的燃料元件误差范围内参数组合进行计算和评估。采用正交实验方法对棒状燃料元件关键参数进行组合取值并编制测试算例,以评估参数不确定度对燃料元件行为的影响。根据选取的关键设计参数和各参数水平编制混合水平正交表,并确定36组测试算例。对36个算例进行测试计算,结果表明部分测试算例的包壳总变形不满足燃料棒设计准则,说明参数不确定度对燃料元件行为产生了负面影响。测试算例的编制和分析对燃料元件设计具有一定的指导意义。Abstract: In order to assess the impact brought about by parameter uncertainty on fuel elements performance, combinations of parameters within the error range of the fuel elements at the design stage need to be calculated and evaluated. Orthogonal experimental methods were used to take values for combinations of key parameters of the rod fuel elements and to prepare test cases. Mixed-level orthogonal tables were prepared based on the selected key design parameters and the levels of each parameter, and 36 sets of test cases were identified. Test calculations were performed on the 36 cases, and the results showed that the total cladding deformation of some test cases did not satisfy the fuel rod design guidelines, indicating that the parameter uncertainty negatively affected the fuel element behavior. The preparation and analysis of the test cases provide guidance for the design of fuel elements.
-
表 1 24-I-6燃料棒主要参数
Table 1. Main Parameters of 24-I-6 Fuel Rod
参数 数值 冷却剂流量/(kg·m−2·s−1) 2848.07 冷却剂入口温度/℃ 255 冷却剂压力/MPa 15.16 包壳外径/mm 10.72 包壳内径/mm 9.48 芯块外径/mm 9.29 芯块高度/mm 15.24 燃料棒长度/mm 975.36 上气腔长度/mm 101.97 预充气体压力/MPa 1.38 燃料235U富集度/% 6.42 表 2 燃料棒关键输入参数及不确定度
Table 2. Key Input Parameters and Corresponding Uncertainties of Fuel Rod
输入参数 名义值 不确定度/% 包壳外径Rc2 10.72 mm ±0.5 包壳内径Rc1 9.48 mm ±0.5 芯块外径Rf 9.29 mm ±0.5 上气腔长度h 101.97 mm ±0.5 芯块孔隙率fpor 5.23% ±13 表 3 输入参数离散化数值表
Table 3. Discretized Numerical Table of Input Parameters
输入参数 离散点 0 1/6 2/6 3/6 4/6 5/6 Rc2/mm 10.666 10.684 10.702 10.720 10.738 10.756 Rc1/mm 9.433 9.449 9.465 9.481 9.497 9.513 Rf /mm 9.244 9.259 9.274 9.289 9.304 9.319 h/mm 101.46 101.63 101.80 101.97 102.14 102.31 fpor/% 4.550 4.777 5.004 5.231 5.458 5.685 表 4 输入参数水平
Table 4. Levels of Input Parameters
输入参数 水平 1 2 3 Rc2/mm 10.666 10.720 10.774 Rc1/mm 9.433 9.480 9.527 Rf/mm 9.244 9.290 9.336 h/mm 101.46 102.48 fpor/% 4.55 5.91 表 5 测试算例混合水平正交表
Table 5. Mixed Level Orthogonal Table of Test Cases
算例编号 h/mm fpor/% Rf/mm Rc1/mm Rc2/mm 算例编号 h/mm fpor/% Rf /mm Rc1/mm Rc2/mm 1 101.46 4.55 9.244 9.433 10.720 19 102.48 4.55 9.244 9.433 10.720 2 101.46 4.55 9.290 9.480 10.774 20 102.48 4.55 9.290 9.480 10.774 3 101.46 4.55 9.336 9.527 10.666 21 102.48 4.55 9.336 9.527 10.666 4 101.46 4.55 9.244 9.480 10.666 22 102.48 4.55 9.244 9.527 10.666 5 101.46 4.55 9.290 9.527 10.720 23 102.48 4.55 9.290 9.433 10.720 6 101.46 4.55 9.336 9.433 10.774 24 102.48 4.55 9.336 9.480 10.774 7 101.46 4.55 9.244 9.527 10.774 25 102.48 4.55 9.244 9.480 10.720 8 101.46 4.55 9.290 9.433 10.666 26 102.48 4.55 9.290 9.527 10.774 9 101.46 4.55 9.336 9.480 10.720 27 102.48 4.55 9.336 9.433 10.666 10 101.46 5.91 9.244 9.480 10.666 28 102.48 5.91 9.244 9.527 10.666 11 101.46 5.91 9.290 9.527 10.720 29 102.48 5.91 9.290 9.433 10.720 12 101.46 5.91 9.336 9.433 10.774 30 102.48 5.91 9.336 9.480 10.774 13 101.46 5.91 9.244 9.480 10.720 31 102.48 5.91 9.244 9.527 10.774 14 101.46 5.91 9.290 9.527 10.774 32 102.48 5.91 9.290 9.433 10.666 15 101.46 5.91 9.336 9.433 10.666 33 102.48 5.91 9.336 9.480 10.720 16 101.46 5.91 9.244 9.433 10.774 34 102.48 5.91 9.244 9.433 10.774 17 101.46 5.91 9.290 9.480 10.666 35 102.48 5.91 9.290 9.480 10.666 18 101.46 5.91 9.336 9.527 10.720 36 102.48 5.91 9.336 9.527 10.720 表 6 36个测试算例输出结果
Table 6. Output Results of 36 Test Cases
算例编号 Tmax/℃ Cmax/μm Dmax/% Pmax/MPa 算例编号 Tmax/℃ Cmax/μm Dmax/% Pmax/MPa 1 1939.5 14.657 0.66413 10.581 19 1939.4 14.657 0.66654 10.493 2 1936.6 14.356 0.67379 10.374 20 1936.5 14.356 0.67610 10.288 3 1924.6 14.942 0.74290 10.093 21 1924.5 14.943 0.74496 9.997 4 1931.9 14.900 0.97244 10.680 22 1928.8 14.946 1.23456 10.659 5 1929.0 14.616 0.98101 10.478 23 1938.0 14.662 0.49306 10.095 6 1940.1 14.271 0.31665 9.808 24 1935.2 14.320 0.49476 9.898 7 1935.9 14.352 1.15130 10.774 25 1934.9 14.628 0.94796 10.623 8 1935.3 14.905 0.51017 10.149 26 1932.2 14.352 0.95646 10.422 9 1932.4 14.653 0.51184 9.950 27 1933.9 14.887 0.35126 9.6609 10 1982.7 14.902 0.94044 11.329 28 1980.9 14.950 1.19810 11.282 11 1980.0 14.618 0.94954 11.123 29 1988.4 14.649 0.48711 10.760 12 1990.5 14.352 0.31285 10.477 30 1985.7 14.305 0.48883 10.552 13 1986.0 14.631 0.91302 11.362 31 1988.3 14.358 1.11840 11.315 14 1982.9 14.356 0.92238 11.152 32 1985.6 14.896 0.50429 10.728 15 1984.7 14.877 0.34685 10.414 33 1982.7 14.642 0.50598 10.521 16 1992.8 14.364 0.61510 11.289 34 1992.6 14.365 0.61803 11.192 17 1981.1 14.944 0.69192 10.981 35 1981.0 14.945 0.69259 10.887 18 1978.4 14.632 0.69400 10.774 36 1978.3 14.633 0.69650 10.683 -
[1] 韩智杰,季松涛,张应超. 燃料元件瞬态性能分析程序FTPAC验证及应用[J]. 原子能科学技术,2014, 48(S1): 389-393. [2] 殷明阳,青涛,余霖,等. 模块式小型堆燃料棒设计及性能验证[J]. 科技视界,2021(12): 30-32. [3] 邓超群,向烽瑞,贺亚男,等. 基于MOOSE平台的棒状燃料元件性能瞬态分析程序开发与验证[J]. 原子能科学技术,2021, 55(8): 1429-1439. [4] 杨震,苏光辉,田文喜,等. 水堆燃料元件性能分析及程序FROBA开发[J]. 原子能科学技术,2012, 46(5): 590-595. [5] 邢硕,张坤,陈平,等. 燃料棒性能分析程序FUPAC V2.0的研发与验证[J]. 原子能科学技术,2021, 55(11): 2048-2053. [6] 许多挺,金鑫,卫小艳,等. 基于Dakota的燃料棒设计验证不确定度研究[J]. 强激光与粒子束,2022, 34(2): 026012. [7] 周勤. 压水堆燃料棒设计参数不确定性研究[J]. 原子能科学技术,2003, 37(S1): 5-9. [8] 王璐,张林,涂腾,等. 燃料棒设计关键参数敏感性分析[J]. 应用科技,2019, 46(6): 69-72. [9] LANNING D D, BERNA G A. FRAPCON-3: integral assessment: AC06-76RL01830[R]. Washington: Nuclear Regulatory Commission, 1997. [10] ONDERS J P, SESHU P, NAGANATHAN N G. Taguchi optimization of strain transfer in an induced strain actuator[J]. Smart Materials and Structures, 1996, 5(3): 327-337. doi: 10.1088/0964-1726/5/3/011 [11] 于秀山. 正交试验设计方法在测试用例设计中的应用[J]. 计算机工程与应用,2004, 40(20): 62-63,76. doi: 10.3321/j.issn:1002-8331.2004.20.019 [12] 李云雁,胡传荣. 实验设计与数据处理[M]. 北京: 化学工业出版社,2005: 79-83. [13] 黄清华,张万昌. SWAT模型参数敏感性分析及应用[J]. 干旱区地理,2010, 33(1): 8-15. [14] 王晨阳. 船用非能动余热排出系统可靠性分析方法研究[D]. 哈尔滨: 哈尔滨工程大学,2020: 106. [15] 王红艳,邹向楠. 基于Morris方法的压电悬臂梁结构参数灵敏度分析[J]. 齐齐哈尔大学学报: 自然科学版,2023, 39(3): 14-18. [16] WANG C Y, PENG M J, XIA G L. Sensitivity analysis based on Morris method of passive system performance under ocean conditions[J]. Annals of Nuclear Energy, 2020, 137: 107067. doi: 10.1016/j.anucene.2019.107067 [17] HERNANDEZ C R, WALLENIUS J, LUXAT J. Dynamic sensitivity and uncertainty analysis of a small lead cooled reactor[J]. Annals of Nuclear Energy, 2020, 144: 107512. doi: 10.1016/j.anucene.2020.107512 [18] 田盛,程蓉珍. 压水堆燃料组件设计准则[J]. 核动力工程,1986, 7(3): 27-32,97.