Study on Effect of Rolling Motion on Natural Circulation Flow Instability in Rod Bundle Channel
-
摘要: 为掌握摇摆条件对于自然循环流动稳定性的影响规律,本研究利用带棒束加热通道的自然循环回路实验系统,开展静态与摇摆条件下的流动不稳定性实验对比研究。实验研究发现,静态条件下棒束通道内存在的流动不稳定性为密度波型脉动(DWO),并形成了预测低压自然循环DWO发生边界的经验关系式;摇摆条件下棒束通道内存在2种典型的两相流动不稳定类型,分别为由棒束通道在流量波动最低点产汽所引起的波谷型脉动和由波谷型脉动和DWO叠加而成的复合型脉动,并分析获得了摇摆影响下自然循环流动不稳定行为的演化规律及其不稳定边界。Abstract: In order to obtain the influence of rolling motion condition on the natural circulation flow stability, the natural circulation loop experimental system with a rod bundle heating channel is used to carry out a comparative experimental study of flow instability under static and rolling conditions. The experimental results show that the flow instability existing in the rod bundle channel is density wave oscillation (DWO). An empirical correlation for the DWO boundary prediction at low pressure NC condition is obtained. Two typical two-phase flow instabilities in rod bundle channel under rolling condition are found in experiments: the trough-type oscillation caused by the vapor generation at the lowest point of flow fluctuation and the compound oscillation formed by the superposition of the trough-type oscillation and DWO. The evolution law of flow instability behavior of natural circulation under the influence of rolling as well as its instability boundary are also obtained.
-
Key words:
- Flow instability /
- Rolling motion /
- Natural circulation /
- Rod bundle channel
-
表 1 实验工况参数范围
Table 1. Ranges of Experimental Parameters
参数名 参数范围 实验开展前初始状态压力Pi/MPa 0.2~0.6 实验段入口过冷度Tsub/℃ 10~70 实验段热流密度q/(kW·m−2) 10~280 A 10º、15º、20º T/s 10~30 表 2 实验参数不确定度
Table 2. Uncertainty of Experimental Parameters
实验参数 不确定度 流体温度/℃ ±0.54 加热元件壁温/℃ ±1.1 压力/MPa ±0.0038 压差/kPa ±0.025 加热功率/% ±0.72 质量流量/% ±0.63 -
[1] YAN B H. Review of the nuclear reactor thermal hydraulic research in ocean motions[J]. Nuclear Engineering and Design, 2017, 313: 370-385. doi: 10.1016/j.nucengdes.2016.12.041 [2] CHENG K, MENG T, ZHAO F L, et al. Development and validation of a thermal hydraulic transient analysis code for offshore floating nuclear reactor based on RELAP5/SCDAPSIM/MOD3.4[J]. Annals of Nuclear Energy, 2019, 127: 215-226. doi: 10.1016/j.anucene.2018.12.004 [3] TANG Y, CHEN B D, XIONG W Y, et al. Comparison of flow instabilities under static condition and marine motion conditions based on experiments[J]. Annals of Nuclear Energy, 2014, 70: 11-20. doi: 10.1016/j.anucene.2014.02.010 [4] LIU D, TIAN W X, XI M M, et al. Study on safety boundary of flow instability and CHF for parallel channels in motion[J]. Nuclear Engineering and Design, 2018, 335: 219-230. doi: 10.1016/j.nucengdes.2018.05.024 [5] TAN S C, SU G H, GAO P Z. Experimental study on two-phase flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2009, 36(1): 103-113. doi: 10.1016/j.anucene.2008.09.014 [6] WANG X Y, TIAN W X, HUANG S Y, et al. Theoretical investigation of two-phase flow instability between parallel channels of natural circulation in rolling motion[J]. Nuclear Engineering and Design, 2019, 343: 257-268. doi: 10.1016/j.nucengdes.2018.12.019 [7] 程坤,谭思超. 海洋条件下反应堆热工水力特性研究进展[J]. 哈尔滨工程大学学报,2019, 40(4): 655-662.