Research on System Performance and Engineering Application of Stirling Power Conversion Technology
-
摘要: 为适应小型模块化核动力装置对新型动力转换技术的选型论证和总体评估需要,本研究重点针对自由活塞斯特林动力转换技术以及工程应用中的关键问题,对比分析了百瓦级同位素-斯特林电源系统、千瓦级反应堆-斯特林电源系统和十千瓦级太阳能-斯特林电源系统的典型应用方案,给出了斯特林动力转换系统的输出功率、转换效率两个关键参数的性能估算模型。研究结果表明,斯特林动力转换效率可达到卡诺循环效率的60%左右,但输出功率一般在几十千瓦以下,需要通过多个机组模块化配置实现更大发电能力,其中耦合结构及传热过程是影响斯特林动力转换系统性能的关键因素。本研究采用的估算模型和分析结果能够为斯特林动力转换系统的性能评估和工程应用提供支撑。
-
关键词:
- 自由活塞斯特林发动机 /
- 性能估算模型 /
- 动力转换效率 /
- 工程应用
Abstract: In order to meet the needs of small modular nuclear power plant for the type selection, demonstration and overall evaluation of new power conversion technology, this study focuses on the free piston Stirling power conversion technology and the key technical problems in engineering application, comparing and analyzing the typical application concepts of the hundred-watt isotope-Stirling power supply system, the kilowatt nuclear reactor-Stirling power supply system, and the ten-kilowatt solar power-Stirling power supply system. The performance estimation models of two key parameters, output power and conversion efficiency, of Stirling power conversion system are given. The research results show that the conversion efficiency of Stirling engine is able to reach about 60% of the Carnot cycle, while the output power is generally below tens of kilowatts. For more power generation through the modular configuration of multiple units, the coupling structure and heat transfer process will be the key factors affecting the performance of Stirling engine. The estimation model and analysis results proposed in the paper are useful to support the performance evaluation and engineering application of Stirling power conversion technology. -
表 1 动力转换效率与斯特林发动机升温比的关系
Table 1. Relation of Power Conversion Efficiency and Stirling Temperature Rise Ratio
序号 升温比 η/% 卡诺循环效率ηc/% (η/ηc) /% 1 1.2 8.71 16.67 52.28 2 1.5 18.35 33.33 55.05 3 2.0 29.29 50.00 58.58 4 2.5 36.75 60.00 61.26 5 3.0 42.26 66.67 63.40 6 3.5 46.55 71.43 65.17 表 2 几种典型功率等级的斯特林动力转换系统性能估算
Table 2. Estimation of Several Typical Outputs of Stirling System Performance
序号 工作温度/K 工作频率/Hz 氦气压力/MPa 输出功率/W η/% 1 700 60 6 100 27.6 2 850 60 8 500 26.8 3 850 70 8 1000 28.4 4 1000 70 10 5000 24.7 5 1200 80 12 10000 29.1 表 3 斯特林发动机性能指标的主要限制因素和解决方案
Table 3. Limiting Factors and Solutions of Stirling Engine Performance
指标 影响因素 原因分析 解决方案 输出功率 热源传热量 热源与斯特林热头之间的传热面积有限,温差也不能过大以免影响效率 通过强化传热技术,提高热源与斯特林热头之间的传热系数 转换效率 冷热端温度 冷热端温差越大、效率越高,但热端温度受限于材料的耐受温度,冷端温度受限于冷却水或其他环境温度 选用高温金属以提高热端温度,但工程上一般不超过850℃ 工作频率 同一运行压力下,频率与效率存在最优值,过高或过低都会降低转换效率 根据发动机和直线电机效率,设计合适的往复运动频率 运行压力 相同频率下运行压力越高,效率越高,但受限于材料强度、高温蠕变等 根据重量和比重量指标,合理选择气体工质的运行压力 比重量 整机结构 内部结构布置、零部件尺寸、活塞及气缸材料等将影响斯特林发动机重量 采用双机对置的紧凑结构,以及引入气体弹簧、轻质活塞、气浮轴承等将有效降低比重量 可靠性 运动部件磨损 在输入热量剧烈变化时,斯特林发动机的内部可能出现密封失效、活塞超行程等问题 优化气体工质流道,使发动机活塞不承受侧向力,同时采用间隙密封以提高可靠性 表 4 Sunpower公司ASC系列样机的研发历程
Table 4. R&D Process of ASC Stirling Engines in Sunpower Corporation
研发阶段 型号 年份 热头材料 热端温度/℃ 技术开发 ASC-1 2004 Mar-M247 850 ASC-0 2005 IN718 650 ASC-1HS 2006 Mar-M247 850 技术提升 ASC-E 2007 IN718 650 ASC-E2 2010 Mar-M247 850 ASC-E3 2012 Mar-M247 850 总装集成 ASC-F — Mar-M247 850 注:“—”表示数据缺乏,下文表格同理 表 5 6 kW斯特林发动机的主要设计参数
Table 5. Main Design Parameters of 6 kW Stirling Engine
参数 设计值 参数 设计值 输出功率/kW 6 工作频率/Hz 60 热端温度/℃ 570 活塞最大位移幅值/mm 16 冷端温度/℃ 111 排出器最大位移幅值/mm 12 转换效率/% 27 排出器相位 60° 运行压力/MPa 6.2 气腔直径/mm 127 表 6 典型太阳能-斯特林系统发电参数
Table 6. Typical Solar Energy-Stirling Power System Performance Parameters
公司 Saudi SBP CPG Miyako 年份 1988 1991 1992 1992 机型 4-275 V160 — NS30A 工质 H2 He He He 电功率/kW 52.5 9 7.5 8.5 最高压力/MPa 15 15 4 14.5 加热温度/℃ 620 630 629 683 理论效率/% 42 30 33 25 实际效率/% 23.1 20.3 19 16 -
[1] TORO C, LIOR N. Analysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation[J]. Energy, 2017, 120: 549-564. doi: 10.1016/j.energy.2016.11.104 [2] 周寿明, 吴红星, 肖翀, 等. 自由活塞式斯特林直线发电机技术综述[J]. 微电机,2013, 46(12): 7-16. doi: 10.3969/j.issn.1009-2366.2021.06.011 [3] MASON L S, SCHREIBER J G. A historical review of Brayton and Stirling power conversion technologies for space applications: NASA/TM-2007-214976[R]. Cleveland: NASA, 2007. [4] SCHREIBER J G, THIEME L G. GRC supporting technology for NASA’s advanced Stirling radioisotope generator (ASRG)[J]. AIP Conference Proceedings, 2008, 969(1): 582-592. [5] WILSON S D, SCHIFER N, CASCIANI M R. Small Stirling technology exploration power for future space science missions[C]//Proceedings of 2019 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2019. [6] HIBBARD K E, MASON L S, NDU O, et al. Stirling to flight initiative[C]//Proceedings of 2016 IEEE Aerospace Conference. Big Sky, MT: IEEE, 2016. [7] 骆成栋,罗雨微,杨伟杰,等. 美国空间核动力斯特林电源系统技术发展分析[J]. 国际太空,2021(6): 44-48. [8] 冶文莲,孙述泽,陈鹏帆,等. 空间自由活塞斯特林发动机研究进展[J]. 真空与低温,2021, 27(5): 457-466. doi: 10.3969/j.issn.1006-7086.2021.05.008 [9] 游尔胜,张廷,张友佳,等. 斯特林动力转换技术在微型核装置中的应用分析[J]. 科学技术创新,2023(9): 58-62. doi: 10.3969/j.issn.1673-1328.2023.09.016 [10] 夏彦,李健,周钦,等. 斯特林热电一体化空间堆电源研究进展[J]. 中国基础科学,2023, 25(1): 46-54,59. doi: 10.3969/j.issn.1009-2412.2023.01.006 [11] BEALE WT. The development of Stirling engines at Sunpower, Inc. [C]//Proceedings of the 2nd International Stirling Engine Conference. Shanghai, 1984. [12] SCHREIBER J G. RE-1000 free – piston Stirling engine update[C]//Proceedings of the 20th Intersociety Energy Conversion Engineering Conference, Miami Beach, 1985. [13] ROSS B, DUDENHOEFER J E. Stirling machine operating experience[C]//Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, 1991. [14] DOCHAT G R. Development of a small, free-piston stirling engine, linear-alternator system for solar thermal electric power applications: AE Technical Paper 810457[R]. Pennsylvania, U.S.: SAE International, 1981. [15] SLABY J G. Overview of free-piston Stirling technology at the NASA Lewis research center[C]//Proceedings of the 23rd Automotive Technology Development Contractors’ Coordination Meeting, Dearborn, 1985. [16] DOCHAT G. SPDE/SPRE final summary report: NASA Contractor Report 187086[R]. Latham: NASA, 1993. [17] WOOD J G, LANE N. Development of the Sunpower 35 We free-piston Stirling convertor[J]. AIP Conference Proceedings, 2005, 746(1): 682-687. [18] WALKER G. Stirling engines[M]. New York: Oxford University Press, 1980: 1-9. [19] CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output[J]. American Journal of Physics, 1975, 43(1): 22-24. doi: 10.1119/1.10023 [20] LEWANDOWSKI E J, JOHNSON P K. Stirling system modeling for space nuclear power systems: NASA/CR—2008-215146[R]. Cleveland: NASA, 2008. [21] GIBSON M A, POSTON D I, MCCLURE P, et al. Kilopower reactor using Stirling technology (KRUSTY) nuclear ground test results and lessons learned: NASA/TM—2018-219941[R]. Cleveland: NASA, 2018. [22] WONG W A, CORNELL P A. Advanced Stirling convertor (ASC) technology maturation in preparation for flight: NASA/TM—2012-217207[R]. Cleveland: NASA, 2012. [23] ORITI S M. Performance measurement of advanced Stirling convertors (ASC-E3): NASA/TM—2013-216564[R]. Cleveland: NASA, 2013. [24] HAMLEY J A, MCCALLUM P W, SANDIFER II C E, et al. NASA’s radioisotope power systems-plans[R]. Cleveland: NASA, 2015. [25] GENG S M, MASON L S, DYSON R W, et al. Overview of multi-kilowatt free-piston Stirling power conversion research at Glenn research center: NASA/TM—2008-215061[R]. Cleveland: NASA, 2008. [26] BRIGGS M H, GENG S M, PEARSON J B, et al. Summary of test results from a 1 kWe – class free-piston Stirling power convertor integrated with a pumped NaK loop[C]//Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville: AIAA, 2010. [27] GIBSON M A, OLESON S R, POSTON D I, et al. NASA's Kilopower reactor development and the path to higher power missions: NASA/TM—2017-219467[R]. Gleveland: NASA, 2017. [28] GIBSON M A, BRIGGS M H, SANZI J L, et al. Heat pipe powered Stirling conversion for the demonstration using flattop fission (DUFF) test: NASA/TM—2013-216542[R]. Cleveland: NASA, 2013. [29] LUKEFAHR B. Utility – scale solar generation technologies: coming of age[C]//Proceedings of the Gulf Coast Power Association Fall Conference, Austin, Texas, U.S., 2009.