Structure Analysis and Evaluation of the Ultrasonic Tomography System for Lead-Bismuth Two-Phase Flow
-
摘要: 铅铋快堆蒸汽发生器传热管破裂(SGTR)事故后,堆芯会出现液态铅铋气-液两相流动现象。超声波层析成像两相流探测方法具有抗干扰性强等优点,而高温会使常规超声波传感器失效,因此,提出了一种基于波导杆的双模态超声波层析成像系统。波导杆结构可避免传感器与高温流体直接接触,使用反射与透射方法对两相分布进行重构,并结合数值模拟方法,最终确定4 MHz声波频率、58 mm长的波导杆和24超声波阵列传感器的超声波层析成像系统。研究不同气相分布的成像效果表明,较气-水两相流而言,超声波层析成像系统在液态铅铋两相流中更具优势。该系统能有效重构液态铅铋气-液两相分布,均方误差均在6%以内,最小图像相关系数大于85%。Abstract: Following steam generator tube rupture (SGTR) accident in a Lead-Bismuth Fast Reactor, the gas-liquid two-phase flow phenomenon emerges within the reactor core. The ultrasonic tomography method for two-phase flow detection exhibits robust anti-interference capabilities. However, conventional ultrasonic sensors become ineffective at high temperatures. Therefore, a dual-modal ultrasonic tomography system based on waveguide rods is proposed. The waveguide rod structure prevents direct contact between the sensor and the high-temperature fluid, employing reflection and transmission methods to reconstruct the two-phase distribution. In combination with numerical simulation methods, an ultrasonic tomography system utilizing a 4 MHz ultrasonic frequency, a 58 mm waveguide rod, and an array of 24 ultrasonic sensors is ultimately determined. The imaging effects of different gas-phase distributions are investigated. The results indicate that, compared to gas-liquid two-phase flows in general, the ultrasonic tomography system exhibits greater advantages in liquid Lead-Bismuth two-phase flows. This system can effectively reconstruct the two-phase distribution with mean square errors within 6% and a minimum image correlation coefficient exceeding 85%.
-
Key words:
- Ultrasound /
- Lead-Bismuth /
- Two-phase flow /
- Tomography /
- Waveguide rod
-
表 1 不同材料透射与反射比
Table 1. Transmission and Reflection Ratio of Different Materials
两相介质 Z1/(Pa·s·m−1) Z2/(Pa·s·m−1) D/% R/% 油-氮气 0.96 0.266 78.05 21.95 水-氮气 1.50 0.266 99.96 0.04 铅铋-氮气 17.65 0.266 99.99 0.01 表 2 仿真参数设置
Table 2. Simulation Parameter Setting
材料 c/(m·s−1) ρ/(kg·m−3) Z/(Pa·s·m−1) 氮气 380 0.0007 0.266 水 1500 1 1.50 316不锈钢 5900 7.89 46.55 铅铋合金 1765 10 17.65 表 3 重构图像的均方误差和相关系数
Table 3. Mean Square Error and Correlation Coefficient of Reconstruction Images
气泡形状 MSE/% CC/% a=4 mm中心气泡 0.1051 95.57 a=6 mm中心气泡 0.0651 99.86 a=8 mm中心气泡 0.0192 99.94 a=10 mm中心气泡 0.0382 98.63 偏移10 mm气泡 0.3824 99.41 偏移20 mm气泡 0.5321 99.10 2个a=6 mm气泡 2.183 95.39 3个a=6 mm气泡 5.82 88.88 -
[1] 刘莉,袁俊杰,顾汉洋,等. 铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究[J]. 核动力工程,2023, 44(4): 55-64. [2] YU Q F, ZHANG Y, WANG C L, et al. Numerical simulation of bubble transport during steam generator tube rupture accident of Lead-cooled Fast Reactor[J]. Annals of Nuclear Energy, 2021, 153: 108066. doi: 10.1016/j.anucene.2020.108066 [3] 谭超,董峰. 多相流过程参数检测技术综述[J]. 自动化学报,2013, 39(11): 1923-1932. [4] ZAKARIA Z, RAHIMAN M H F, RAHIM R A. Simulation of the two-phase liquid–gas flow through ultrasonic transceivers application in ultrasonic tomography[J]. Sensors & Transducers Journal, 2010, 112(1): 24-38. [5] RAHIMAN M H F, RAHIM R A, RAHIM H A, et al. An investigation on chemical bubble column using ultrasonic tomography for imaging of gas profiles[J]. Sensors and Actuators B: Chemical, 2014, 202: 46-52. doi: 10.1016/j.snb.2014.05.043 [6] LI N, XU K. Simulation study on ultrasonic tomography in bubbly gas/liquid two-phase flow[C]//2017 IEEE International Conference on Imaging Systems and Techniques (IST). Beijing: IEEE, 2017: 1-6. [7] MURAKAWA H, SHIMIZU T, ECKERT S. Development of a high-speed ultrasonic tomography system for measurements of rising bubbles in a horizontal cross-section[J]. Measurement, 2021, 182: 109654. doi: 10.1016/j.measurement.2021.109654 [8] 王健. 高温环境下超声波声速检测系统设计[D]. 太原: 中北大学,2017. [9] ECKERT S, GERBETH G, MELNIKOV V I. Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide[J]. Experiments in Fluids, 2003, 35(5): 381-388. doi: 10.1007/s00348-003-0606-0 [10] KAŽYS R, MAŽEIKA L, BARAUSKAS R, et al. Evaluation of diffraction errors in precise pulse-echo measurements of ultrasound velocity in chambers with waveguide[J]. Ultrasonics, 2002, 40(1-8): 853-858. doi: 10.1016/S0041-624X(02)00226-3 [11] 刘皓,谭超,董峰. 基于高斯回归预测的超声成像高分辨率重建[J]. 中国科学院大学学报,2020, 37(2): 234-241. doi: 10.7523/j.issn.2095-6134.2020.02.013 [12] STEINER G, DEINHAMMER C. Ultrasonic time-of-flight techniques for monitoring multi-component processes[J]. E & I Elektrotechnik und Informationstechnik, 2009, 126(5): 200-205. [13] 李菲菲. 超声波层析成像的图像重建算法研究[D]. 沈阳: 东北大学,2011. [14] 李潇. 基于工业总线的双模态超声层析成像系统设计[D]. 天津: 天津大学,2018. [15] 田昌,苏明旭,顾建飞. 气固两相流超声过程层析成像系统研究[J]. 仪器仪表学报,2016, 37(3): 586-592. doi: 10.3969/j.issn.0254-3087.2016.03.015 [16] KAŽYS R , VOLEISIS A, SLITERIS R, et al. Ultrasonic transducers for high temperature applications in accelerator driven reactors[C]. Paris, France: 5th World Congress on Ultrasonics WCU2003, 2003. [17] 邵一哲,谭超,董峰. 油水两相流超声测试机理仿真建模[J]. 中南大学学报: 自然科学版,2018, 49(4): 987-994. [18] LOSEV G, KOLESNICHENKO I. The influence of the waveguide on the quality of measurements with ultrasonic Doppler velocimetry[J]. Flow Measurement and Instrumentation, 2020, 75: 101786. doi: 10.1016/j.flowmeasinst.2020.101786 -