Numerical Simulation Study on Static Buckling Behavior of Bimetallic Spacer Grids
-
摘要: 定位格架的屈曲失稳行为会影响燃料组件的安全性,为掌握定位格架静态屈曲演化行为,本文基于有限元分析(FEA)方法建立双金属定位格架数值计算模型,通过计算结果与试验结果对比进行验证,并开展初始夹持力对格架强度影响研究。计算结果表明:数值模拟得到的临界屈曲载荷等结果与试验结果吻合良好;定位格架屈曲失稳的主要原因是邻近中心横排的部分条带产生塑性变形并扩大到整体;弹簧夹持力的减小对格架临界屈曲强度的影响较小,但对屈曲后的响应影响较大。本文建立的数值分析方法能够用于双金属定位格架静态临界屈曲载荷的预测,并为新型定位格架结构设计提供支持。
-
关键词:
- 定位格架 /
- 有限元分析(FEA) /
- 临界屈曲载荷 /
- 初始夹持力
Abstract: The buckling behavior of spacer grids can seriously affect the safety of fuel assemblies. To understand the static buckling evolution characteristics of spacer grids, this study established a numerical model of bimetallic spacer grids using the Finite Element Analysis (FEA) method. The model was validated by comparing computational results with experimental data, and the influence of initial clamping force on grid strength was studied. The calculation results show that the critical buckling load obtained by numerical simulation is in good agreement with the experimental results. The primary cause of spacer grid buckling is the plastic deformation occurring in straps adjacent to the central transverse row, which subsequently propagates throughout the entire structure. The decrease of spring clamping force has little effects on the critical buckling strength of the spacer grid, but has great effects on the response after buckling. The numerical analysis method in this paper can predict the static critical buckling load of bimetallic spacer grid and provide support for the structural design of new spacer grid. -
表 1 定位格架材料性能参数
Table 1. Material Properties of Spacer Grid
材料 密度
/(g·cm−3)杨氏模量
/MPa泊松比 屈服强度
/MPaZr-4 6560 98800 0.368 309 Inconel 718 8224 200100 0.293 1030 表 2 计算结果与试验结果比较
Table 2. Comparison Between Test Results and FEA Results
格架静态屈曲结果 试验结果 计算结果 相对误差/% 临界静态屈曲载荷 22227 N 22877 N 2.9 总体平均静刚度 25662 N·mm−1 22680 N·mm−1 −8.3 表 3 不同计算方案的临界屈曲载荷结果
Table 3. Critical Buckling Load Results of Different Computational Schemes
计算方案 初始夹持力/N 临界静态屈曲载荷/N 相对偏差/% A 34.4 22877 0 B 26.8 22517 −1.6 C 21.6 22349 −2.3 D 16.5 22228 −2.8 E 11.7 22205 −2.9 F 7.0 22184 −3.0 G 3.5 22167 −3.1 -
[1] SCHETTINO C F M, GOUVÊA J P, MEDEIROS N. Analyses of spacer grids compression strength and fuel assemblies structural behavior[J]. Nuclear Engineering and Design, 2013, 260: 93-103. doi: 10.1016/j.nucengdes.2013.03.008 [2] HÖGLUND, J. Performance of the Westinghouse WWER-1000 fuel design: International Conferences on WWER Fuel Performance, modelling and experimental support[C]. Sofia (Bulgaria): Institute for Nuclear Research and Nuclear Energy, 2011. [3] 吴先洋,蒋跃元,王鼎渠,等. NHR200-Ⅱ定位格架整体承载能力试验研究[J]. 核科学与工程,2015, 35(3): 424-433. doi: 10.3969/j.issn.0258-0918.2015.03.005 [4] JIN Y G, BAEK S J, KIM D S, et al. A study on structural strength of irradiated spacer grid for PWR fuel[C]//Proceeding of the KNS 2014 Fall Meeting. Korea: KNS, 2014: 30-31. [5] SONG K N, YOON K H, LEE J J, et al. Finite element analysis model for estimating the dynamic crush strength of the spacer grid assembly for PWRs[J]. Key Engineering Materials, 2006, 324-325: 1011-1014. doi: 10.4028/www.scientific.net/KEM.324-325.1011 [6] SUN J Y, DANG Y, LIU S, et al. Investigation into the influence of fuel rods on the anti-seismic mechanical characteristics of fuel assembly spacer grid by FEM method[C]//Proceedings of 2017 25th International Conference on Nuclear Engineering. Shanghai: Nuclear Engineering Division, 2017: 6. [7] 秦勉,蒲曾坪,陈平,等. 定位格架静态屈曲载荷分析方法研究[J]. 核动力工程,2018, 39(S1): 28-33. [8] SCHETTINO C F M. Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation[C]//Proceedings of 2017 International Nuclear Atlantic Conference-INAC 2017. Belo Horizonte: INAC, 2017: 22-27. [9] YOO Y, KIM J, EOM K, et al. Finite element model to simulate the spacer grid buckling characteristics[C]// Proceedings of the 2020 International Conference on Nuclear Engineering. Virtual: Online, 2020.YOO Y, KIM J, EOM K, et al. Finite element model to simulate the spacer grid buckling characteristics[C]// Proceedings of the 2020 International Conference on Nuclear Engineering. Virtual: Online, 2020. [10] 严东晋,宋启根. 结构冲击屈曲准则讨论[J]. 工程力学,1997, 11(14): 18-28. [11] 张世权. PWR燃料组件定位格架夹持力辐照松弛的研究[J]. 核动力工程,1987, 8(1): 17-23. -