Analysis of Heat Transfer Characteristics of Steam Generator with Axial Economizer Based on RELAP5
-
摘要: 立式自然循环蒸汽发生器作为压水堆核电站的重要设备,增强其换热性能对整个电站的经济性至关重要。本研究选用AP1000的蒸汽发生器作为研究对象,并利用RELAP5系统分析程序,分别对传统蒸汽发生器和轴流式预热蒸汽发生器进行计算分析,研究了轴流式预热蒸汽发生器的换热机理,并着重分析了不同纵向隔板高度和循环水分配率对换热特性的影响。结果表明:轴流式预热蒸汽发生器能够显著提升一、二次侧传热温差,从而有效提高整体换热效率;此外,研究还发现提升隔板高度能在一定程度上提高换热能力,并存在最佳隔板高度使得换热功率达到峰值;同时,通过降低循环水分配率有助于增大传热温差,进一步提高换热性能。本研究为轴流式预热蒸汽发生器工程分析和设计提供参考依据。
-
关键词:
- 轴流式预热蒸汽发生器 /
- 传热特性 /
- 隔板高度 /
- 循环水分配率 /
- 换热功率
Abstract: The vertical natural-circulation steam generator, as a crucial equipment in pressurized water reactor nuclear power plants, enhancing its heat transfer performance is vital to the economy of the entire power plant. This study selects the steam generator of AP1000 as the research object and employs the RELAP5 system analysis program to calculate and analyze both the conventional steam generator and the steam generator with axial economizer. The heat transfer mechanism of the steam generator with axial economizer is studied, and focus on the effects of different heights of the divider plate and the recirculated water distribution ratio on the heat transfer characteristics. The results show that the steam generator with axial economizer can significantly increase the heat transfer temperature difference between the primary and secondary sides, thereby effectively enhancing the overall heat transfer efficiency. In addition, the study finds that increasing the height of the divider plate can improve the heat transfer capacity to a certain extent, and there is an optimal height at which the heat transfer power reaches its peak. Moreover, reducing the recirculated water distribution ratio helps to increase the heat transfer temperature difference, further improving the heat transfer performance. This research provides reference for the engineering analysis and design of the steam generator with axial economizer. -
表 1 AP1000蒸汽发生器的RELAP5稳态计算结果
Table 1. Steady-State Calculation Results of RELAP5 for AP1000 Steam Generator
参数 设计值[14] 计算值 相对偏差/% 换热功率/MW 1707.5 1711.5 0.23 蒸汽出口压力/MPa 5.77 5.78 0.17 蒸汽流量/(kg·s−1) 943.7 943.7 0 一次侧出口温度/K 553.80 553.47 −0.06 一次侧流体流量/(kg·s−1) 7591.3 7591.5 0.003 循环倍率 3.71 3.71 0 -
[1] KRAUS A D, AZIZ A, WELTY J, et al. Extended surface heat transfer[J]. Applied Mechanics Reviews, 2001, 54(5): B92. doi: 10.1115/1.1399680 [2] WANG Q W, ZENG M, MA T, et al. Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization[J]. Applied Energy, 2014, 135: 748-777. doi: 10.1016/j.apenergy.2014.05.004 [3] XIE G N, LIU X T, YAN H B, et al. Turbulent flow characteristics and heat transfer enhancement in a square channel with various crescent ribs on one wall[J]. International Journal of Heat and Mass Transfer, 2017, 115: 283-295. doi: 10.1016/j.ijheatmasstransfer.2017.07.012 [4] QUINOT P, DESFONTAINES G. The main components of the European pressurized water reactor[J]. Nuclear Engineering and Design, 1999, 187(1): 121-133. doi: 10.1016/S0029-5493(98)00261-1 [5] RIZNIC J R. Steam generators for nuclear power plants[M]. Duxford: Woodhead Publishing, 2017: 16-26. [6] 李磊,张富源,何戈宁,等. 核电高效紧凑新型蒸汽发生器设计研究[J]. 核动力工程,2020, 41(1): 189-193. [7] 吴杨,李冬慧,李鹏飞,等. 基于轴向预热器的蒸汽发生器强化传热研究[J]. 核科学与工程,2018, 38(6): 928-934. doi: 10.3969/j.issn.0258-0918.2018.06.003 [8] CONG T L, TIAN W X, SU G H, et al. Three-dimensional study on steady thermohydraulics characteristics in secondary side of steam generator[J]. Progress in Nuclear Energy, 2014, 70: 188-198. doi: 10.1016/j.pnucene.2013.08.011 [9] ZHAO X H, WANG M J, WU G, et al. The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT[J]. Nuclear Engineering and Technology, 2021, 53(3): 763-775. doi: 10.1016/j.net.2020.07.043 [10] HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424 [11] 苏舒,刘承敏,黄伟. 基于节点法的轴流式预热蒸汽发生器稳态热工水力分析[J]. 核动力工程,2021, 42(4): 39-44. [12] ZENG C J, WANG M J, WU G, et al. Numerical study on the enhanced heat transfer characteristics of steam generator with axial economizer[J]. International Journal of Thermal Sciences, 2022, 182: 107794. doi: 10.1016/j.ijthermalsci.2022.107794 [13] FLETCHER C D, SCHULTZ R R. RELAP5/MOD3 code manual: NUREG/CR-5535-vol. 5[R]. Idaho Falls: Idaho National Engineering Laboratory, 1992. [14] WANG W W, SU G H, TIAN W X, et al. Research on thermal hydraulic behavior of small-break LOCAs in AP1000[J]. Nuclear Engineering and Design, 2013, 263: 380-394. doi: 10.1016/j.nucengdes.2013.06.004 [15] 姜瑞涛,周世梁,韦映钦. AP1000蒸汽发生器水位瞬态分析[J]. 原子能科学技术,2013, 47(S): 610-613. -