高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RELAP5的轴流式预热蒸汽发生器传热特性分析

黄中圆 王晓丁 李振中 刘海东 陈德奇

黄中圆, 王晓丁, 李振中, 刘海东, 陈德奇. 基于RELAP5的轴流式预热蒸汽发生器传热特性分析[J]. 核动力工程. doi: 10.13832/j.jnpe.2024.050032
引用本文: 黄中圆, 王晓丁, 李振中, 刘海东, 陈德奇. 基于RELAP5的轴流式预热蒸汽发生器传热特性分析[J]. 核动力工程. doi: 10.13832/j.jnpe.2024.050032
Huang Zhongyuan, Wang Xiaoding, Li Zhenzhong, Liu Haidong, Chen Deqi. Analysis of Heat Transfer Characteristics of Steam Generator with Axial Economizer Based on RELAP5[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.050032
Citation: Huang Zhongyuan, Wang Xiaoding, Li Zhenzhong, Liu Haidong, Chen Deqi. Analysis of Heat Transfer Characteristics of Steam Generator with Axial Economizer Based on RELAP5[J]. Nuclear Power Engineering. doi: 10.13832/j.jnpe.2024.050032

基于RELAP5的轴流式预热蒸汽发生器传热特性分析

doi: 10.13832/j.jnpe.2024.050032
详细信息
    作者简介:

    黄中圆(2001—),男,硕士研究生,现主要从事反应堆热工水力方面研究,E-mail: 2207214430@qq.com

    通讯作者:

    李振中,E-mail: cqulzz@cqu.edu.cn

  • 中图分类号: TL334

Analysis of Heat Transfer Characteristics of Steam Generator with Axial Economizer Based on RELAP5

  • 摘要: 立式自然循环蒸汽发生器作为压水堆核电站的重要设备,增强其换热性能对整个电站的经济性至关重要。本研究选用AP1000的蒸汽发生器作为研究对象,并利用RELAP5系统分析程序,分别对传统蒸汽发生器和轴流式预热蒸汽发生器进行计算分析,研究了轴流式预热蒸汽发生器的换热机理,并着重分析了不同纵向隔板高度和循环水分配率对换热特性的影响。结果表明:轴流式预热蒸汽发生器能够显著提升一、二次侧传热温差,从而有效提高整体换热效率;此外,研究还发现提升隔板高度能在一定程度上提高换热能力,并存在最佳隔板高度使得换热功率达到峰值;同时,通过降低循环水分配率有助于增大传热温差,进一步提高换热性能。本研究为轴流式预热蒸汽发生器工程分析和设计提供参考依据。

     

  • 图  1  AP1000蒸汽发生器RELAP5节点图

    Figure  1.  Node Diagram of RELAP5 for AP1000 Steam Generator

    图  2  轴流式预热蒸汽发生器的RELAP5节点图

    Figure  2.  Node Diagram of RELAP5 for Steam Generator with Axial Economizer

    图  3  沿一次侧流体流动方向流体温度变化

    Figure  3.  Fluid Temperature Changes Along t Primary Side Fluid Flow Direction

    图  4  沿一次侧流体流动方向管壁外表面热流密度

    Figure  4.  Heat Flux Density on the Outer Surface of the Tube Wall Along the Primary Side Fluid Flow Direction

    图  5  换热功率随隔板高度的变化

    Figure  5.  Variation of Heat Exchange with the Height of Partition

    图  6  产汽量随隔板高度的变化

    Figure  6.  Variation of Steam Production with the Height of Partitions

    图  7  不同隔板高度的预热区温度分布

    Figure  7.  Temperature Change of the Preheating Section Under Different Plate Heights

    图  8  不同隔板高度的空泡份额分布

    Figure  8.  Void Fraction Distribution Under Different Plate Heights

    图  9  换热功率随循环水分配率的变化

    Figure  9.  Variation of Heat Exchange with the Ratio of Recirculated Water

    图  10  产汽量随循环水分配率的变化

    Figure  10.  Variation of Steam Production with the Ratios of Recirculated Water

    图  11  不同循环水分配率的预热区温度分布

    Figure  11.  Temperature Change of the Preheating Section Under Different Ratios of Recirculated Water

    图  12  不同循环水分配率的二次侧空泡份额分布

    Figure  12.  Void Fraction Distribution Under Different Ratios of Recirculated Water

    表  1  AP1000蒸汽发生器的RELAP5稳态计算结果

    Table  1.   Steady-State Calculation Results of RELAP5 for AP1000 Steam Generator

    参数 设计值[14] 计算值 相对偏差/%
    换热功率/MW 1707.5 1711.5 0.23
    蒸汽出口压力/MPa 5.77 5.78 0.17
    蒸汽流量/(kg·s−1) 943.7 943.7 0
    一次侧出口温度/K 553.80 553.47 −0.06
    一次侧流体流量/(kg·s−1) 7591.3 7591.5 0.003
    循环倍率 3.71 3.71 0
    下载: 导出CSV
  • [1] KRAUS A D, AZIZ A, WELTY J, et al. Extended surface heat transfer[J]. Applied Mechanics Reviews, 2001, 54(5): B92. doi: 10.1115/1.1399680
    [2] WANG Q W, ZENG M, MA T, et al. Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization[J]. Applied Energy, 2014, 135: 748-777. doi: 10.1016/j.apenergy.2014.05.004
    [3] XIE G N, LIU X T, YAN H B, et al. Turbulent flow characteristics and heat transfer enhancement in a square channel with various crescent ribs on one wall[J]. International Journal of Heat and Mass Transfer, 2017, 115: 283-295. doi: 10.1016/j.ijheatmasstransfer.2017.07.012
    [4] QUINOT P, DESFONTAINES G. The main components of the European pressurized water reactor[J]. Nuclear Engineering and Design, 1999, 187(1): 121-133. doi: 10.1016/S0029-5493(98)00261-1
    [5] RIZNIC J R. Steam generators for nuclear power plants[M]. Duxford: Woodhead Publishing, 2017: 16-26.
    [6] 李磊,张富源,何戈宁,等. 核电高效紧凑新型蒸汽发生器设计研究[J]. 核动力工程,2020, 41(1): 189-193.
    [7] 吴杨,李冬慧,李鹏飞,等. 基于轴向预热器的蒸汽发生器强化传热研究[J]. 核科学与工程,2018, 38(6): 928-934. doi: 10.3969/j.issn.0258-0918.2018.06.003
    [8] CONG T L, TIAN W X, SU G H, et al. Three-dimensional study on steady thermohydraulics characteristics in secondary side of steam generator[J]. Progress in Nuclear Energy, 2014, 70: 188-198. doi: 10.1016/j.pnucene.2013.08.011
    [9] ZHAO X H, WANG M J, WU G, et al. The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT[J]. Nuclear Engineering and Technology, 2021, 53(3): 763-775. doi: 10.1016/j.net.2020.07.043
    [10] HE S P, WANG M J, ZHANG J, et al. A deep-learning reduced-order model for thermal hydraulic characteristics rapid estimation of steam generators[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123424. doi: 10.1016/j.ijheatmasstransfer.2022.123424
    [11] 苏舒,刘承敏,黄伟. 基于节点法的轴流式预热蒸汽发生器稳态热工水力分析[J]. 核动力工程,2021, 42(4): 39-44.
    [12] ZENG C J, WANG M J, WU G, et al. Numerical study on the enhanced heat transfer characteristics of steam generator with axial economizer[J]. International Journal of Thermal Sciences, 2022, 182: 107794. doi: 10.1016/j.ijthermalsci.2022.107794
    [13] FLETCHER C D, SCHULTZ R R. RELAP5/MOD3 code manual: NUREG/CR-5535-vol. 5[R]. Idaho Falls: Idaho National Engineering Laboratory, 1992.
    [14] WANG W W, SU G H, TIAN W X, et al. Research on thermal hydraulic behavior of small-break LOCAs in AP1000[J]. Nuclear Engineering and Design, 2013, 263: 380-394. doi: 10.1016/j.nucengdes.2013.06.004
    [15] 姜瑞涛,周世梁,韦映钦. AP1000蒸汽发生器水位瞬态分析[J]. 原子能科学技术,2013, 47(S): 610-613.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-12
  • 修回日期:  2024-07-10
  • 网络出版日期:  2025-04-22

目录

    /

    返回文章
    返回