高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核反应堆非共晶熔融物对涂层消熔动态特性研究

龚涛 张卢腾 马在勇 孙皖 朱隆祥 连强 唐思邈 潘良明

龚涛, 张卢腾, 马在勇, 孙皖, 朱隆祥, 连强, 唐思邈, 潘良明. 核反应堆非共晶熔融物对涂层消熔动态特性研究[J]. 核动力工程, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035
引用本文: 龚涛, 张卢腾, 马在勇, 孙皖, 朱隆祥, 连强, 唐思邈, 潘良明. 核反应堆非共晶熔融物对涂层消熔动态特性研究[J]. 核动力工程, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035
Gong Tao, Zhang Luteng, Ma Zaiyong, Sun Wan, Zhu Longxiang, Lian Qiang, Tang Simiao, Pan Liangming. Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor[J]. Nuclear Power Engineering, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035
Citation: Gong Tao, Zhang Luteng, Ma Zaiyong, Sun Wan, Zhu Longxiang, Lian Qiang, Tang Simiao, Pan Liangming. Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor[J]. Nuclear Power Engineering, 2025, 46(3): 111-117. doi: 10.13832/j.jnpe.2024.050035

核反应堆非共晶熔融物对涂层消熔动态特性研究

doi: 10.13832/j.jnpe.2024.050035
基金项目: 国家自然科学基金(12375165)
详细信息
    作者简介:

    龚 涛(2001—),男,硕士研究生,现主要从事反应堆热工水力方面的研究,E-mail: 1976501351@qq.com

    通讯作者:

    张卢腾,E-mail: ltzhang@cqu.edu.cn

  • 中图分类号: TL334

Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor

  • 摘要: 为揭示熔融物与反应堆内部分装置上涂层材料的消熔特性,本研究以液态NaNO3-KNO3混合物作熔融物、固态 KNO3作涂层材料,开展了涂层消熔动态特性实验研究。结果表明,消熔过程可分为3个阶段:熔融物骤冷凝固及再熔化阶段、涂层组分扩散消熔阶段、消熔终止阶段。消熔过程中,相界面存在组分扩散现象,相界面瞬时液相线温度高于熔池瞬时液相线温度,导致在相界面温度低于涂层熔点的情况下依然出现涂层熔解。在实验基础上,基于传热传质关系建立了消熔特性模型,计算得到组分浓度最大误差为4.5%,相界面温度最大误差为11.3%,证明了模型的准确性。

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic Diagram of Experimental Apparatus

    图  2  加热棒位置示意图

    Figure  2.  Schematic Diagram of Heating Rod Location

    图  3  消熔罐热电偶安装位置示意图

    Figure  3.  Installation Position Diagram of Melting Tank Thermocouple

    图  4  熔池温度瞬态变化

    Figure  4.  Transient Change of Corium Pool Temperature

    图  5  相界面温度与涂层消熔厚度瞬态变化

    Figure  5.  Transient Changes of Phase Interface Temperature and Coating Melting Thickness

    图  6  熔池和相界面K+浓度瞬态变化

    Figure  6.  Transient Change of K+ Concentration in Corium Pool and Interface

    图  7  熔池与相界面液相线温度变化

    Figure  7.  Transient Change of Liquidus Temperature of Corium Pool and Interface

    图  8  相界面位置K+浓度变化

    Figure  8.  Transient Change of K+ Concentration at Interphase

    图  9  相界面位置液相线温度变化

    Figure  9.  Transient Change of Liquidus Temperature at Interphase

    图  10  相界面温度瞬态变化

    Figure  10.  Transient Change of Interface Temperature

    表  1  相关物性参数

    Table  1.   Related Physical Property Parameters

    参数 50%KNO3-50%NaNO3
    混合物
    KNO3固体
    熔点/℃ 222 335
    密度/(kg·m−3) 1900 2110
    比热/(J·kg−1·K−1) 1380 1819
    导热系数/
    (W·m−1·K−1)
    0.44 0.85
      注:①—摩尔分数,下同。
    下载: 导出CSV
  • [1] GUSAROV V V, AL’MYASHEV V I, BESHTA S V. Sacrificial materials for safety systems of nuclear power stations: a new class of functional materials[J]. Thermal Engineering, 2001, 48(9): 721-724.
    [2] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2004, 24(1): 1-10. doi: 10.1016/S0955-2219(03)00129-8
    [3] AKOPOV F A, BORODINA T I, VAL'YANO G E, et al. Interaction of the metallic components of melt in a reactor core with zirconium dioxide ceramic[J]. Atomic Energy, 1995, 79(6): 857-862. doi: 10.1007/BF02415478
    [4] AKOPOV F A, AKOPYAN A A, BARYKIN B M, et al. Behavior of plasma-sprayed zirconium dioxide ceramic under the thermochemical effect of components of the reactor core melt[J]. Atomic Energy, 1998, 85(2): 540-543. doi: 10.1007/BF02359931
    [5] SLABKII V D, TRAKTUEV O M, KHRULEV A A, et al. Interaction of a model melt of a reactor core with zirconium dioxide ceramic with different porosity[J]. Atomic Energy, 2000, 88(4): 274-280. doi: 10.1007/BF02673610
    [6] MINEEV V N, AKOPOV F A, VLASOV A S, et al. Optimization of the materials composition in external core catchers for nuclear reactors[J]. Atomic Energy, 2002, 93(5): 872-879. doi: 10.1023/A:1022451520006
    [7] RAVI SHANKAR A, VETRIVENDAN E, SHUKLA P K, et al. Characterisation of ceramic-coated 316LN stainless steel exposed to high-temperature thermite melt and molten sodium[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5272-5283. doi: 10.1007/s11665-017-2933-y
    [8] PLEVACOVA K, JOURNEAU C, PILUSO P, et al. Eutectic crystallization in the UO2–Al2O3–HfO2 ceramic phase diagram[J]. Ceramics International, 2014, 40(2): 2565-2573. doi: 10.1016/j.ceramint.2013.08.047
    [9] BECHTA S ,GRANOVSKY V ,KHABENSKY V, et al. Corium phase equilibria based on MASCA, METCOR and CORPHAD results [J]. Nuclear Engineering and Design, 2008, 238 (10): 2761-2771.
    [10] KHABENSKY V B, GRANOVSKY V S, ALMJASHEV V I, et al. Effect of temperature gradient on chemical element partitioning in corium pool during in-vessel retention[J]. Nuclear Engineering and Design, 2018, 327: 82-91. doi: 10.1016/j.nucengdes.2017.11.030
    [11] DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3
    [12] GAUS-LIU X, MIASSOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—Description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010, 240(11): 3898-3903. doi: 10.1016/j.nucengdes.2010.09.001
    [13] ZHANG L T, ZHANG Y P, ZHOU Y K, et al. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers[J]. Annals of Nuclear Energy, 2016, 87: 81-88. doi: 10.1016/j.anucene.2015.08.021
    [14] RETTENMAYR M. Melting and remelting phenomena[J]. International Materials Reviews, 2009, 54(1): 1-17. doi: 10.1179/174328009X392930
    [15] SEILER J M, FROMENT K. Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[J]. Multiphase Science and Technology, 2000, 12(2): 117-257.
    [16] PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-11-29
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回