Study on the Dynamic Melting Characteristics of Coating Exposed to Non-eutectic Corium in Nuclear Reactor
-
摘要: 为揭示熔融物与反应堆内部分装置上涂层材料的消熔特性,本研究以液态NaNO3-KNO3混合物作熔融物、固态 KNO3作涂层材料,开展了涂层消熔动态特性实验研究。结果表明,消熔过程可分为3个阶段:熔融物骤冷凝固及再熔化阶段、涂层组分扩散消熔阶段、消熔终止阶段。消熔过程中,相界面存在组分扩散现象,相界面瞬时液相线温度高于熔池瞬时液相线温度,导致在相界面温度低于涂层熔点的情况下依然出现涂层熔解。在实验基础上,基于传热传质关系建立了消熔特性模型,计算得到组分浓度最大误差为4.5%,相界面温度最大误差为11.3%,证明了模型的准确性。Abstract: To investigate the melting characteristics of the corium and coating materials in the reactor, the liquid NaNO3-KNO3 mixture is used as the corium and solid KNO3 is used as the coating material to conduct experimental research on the dynamic melting characteristics of the coating. The results show that the melting process can be divided into three stages: corium quench solidification and remelting, diffusive melting of coating components and melting termination. In the process of melting, component diffusion is observed at the phase interface, and the instantaneous liquidus temperature at the phase interface is higher than that of the molten pool, resulting in the coating melting even when the phase interface temperature is lower than the melting point of the coating. On the basis of experiments, a melting characteristic model is established based on the heat and mass transfer relationship. The maximum error of component concentration and phase interface temperature is 4.5% and 11.3%, which proves the accuracy of the model.
-
Key words:
- Corium /
- Non-eutectic /
- Coating /
- Melting /
- Component diffusion
-
表 1 相关物性参数
Table 1. Related Physical Property Parameters
参数 50%①KNO3-50%NaNO3
混合物KNO3固体 熔点/℃ 222 335 密度/(kg·m−3) 1900 2110 比热/(J·kg−1·K−1) 1380 1819 导热系数/
(W·m−1·K−1)0.44 0.85 注:①—摩尔分数,下同。 -
[1] GUSAROV V V, AL’MYASHEV V I, BESHTA S V. Sacrificial materials for safety systems of nuclear power stations: a new class of functional materials[J]. Thermal Engineering, 2001, 48(9): 721-724. [2] CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings[J]. Journal of the European Ceramic Society, 2004, 24(1): 1-10. doi: 10.1016/S0955-2219(03)00129-8 [3] AKOPOV F A, BORODINA T I, VAL'YANO G E, et al. Interaction of the metallic components of melt in a reactor core with zirconium dioxide ceramic[J]. Atomic Energy, 1995, 79(6): 857-862. doi: 10.1007/BF02415478 [4] AKOPOV F A, AKOPYAN A A, BARYKIN B M, et al. Behavior of plasma-sprayed zirconium dioxide ceramic under the thermochemical effect of components of the reactor core melt[J]. Atomic Energy, 1998, 85(2): 540-543. doi: 10.1007/BF02359931 [5] SLABKII V D, TRAKTUEV O M, KHRULEV A A, et al. Interaction of a model melt of a reactor core with zirconium dioxide ceramic with different porosity[J]. Atomic Energy, 2000, 88(4): 274-280. doi: 10.1007/BF02673610 [6] MINEEV V N, AKOPOV F A, VLASOV A S, et al. Optimization of the materials composition in external core catchers for nuclear reactors[J]. Atomic Energy, 2002, 93(5): 872-879. doi: 10.1023/A:1022451520006 [7] RAVI SHANKAR A, VETRIVENDAN E, SHUKLA P K, et al. Characterisation of ceramic-coated 316LN stainless steel exposed to high-temperature thermite melt and molten sodium[J]. Journal of Materials Engineering and Performance, 2017, 26(11): 5272-5283. doi: 10.1007/s11665-017-2933-y [8] PLEVACOVA K, JOURNEAU C, PILUSO P, et al. Eutectic crystallization in the UO2–Al2O3–HfO2 ceramic phase diagram[J]. Ceramics International, 2014, 40(2): 2565-2573. doi: 10.1016/j.ceramint.2013.08.047 [9] BECHTA S ,GRANOVSKY V ,KHABENSKY V, et al. Corium phase equilibria based on MASCA, METCOR and CORPHAD results [J]. Nuclear Engineering and Design, 2008, 238 (10): 2761-2771. [10] KHABENSKY V B, GRANOVSKY V S, ALMJASHEV V I, et al. Effect of temperature gradient on chemical element partitioning in corium pool during in-vessel retention[J]. Nuclear Engineering and Design, 2018, 327: 82-91. doi: 10.1016/j.nucengdes.2017.11.030 [11] DINH T N, KONOVALIKHIN M J, SEHGAL B R. Core melt spreading on a reactor containment floor[J]. Progress in Nuclear Energy, 2000, 36(4): 405-468. doi: 10.1016/S0149-1970(00)00088-3 [12] GAUS-LIU X, MIASSOEDOV A, CRON T, et al. In-vessel melt pool coolibility test—Description and results of LIVE experiments[J]. Nuclear Engineering and Design, 2010, 240(11): 3898-3903. doi: 10.1016/j.nucengdes.2010.09.001 [13] ZHANG L T, ZHANG Y P, ZHOU Y K, et al. COPRA experiments on natural convection heat transfer in a volumetrically heated slice pool with high Rayleigh numbers[J]. Annals of Nuclear Energy, 2016, 87: 81-88. doi: 10.1016/j.anucene.2015.08.021 [14] RETTENMAYR M. Melting and remelting phenomena[J]. International Materials Reviews, 2009, 54(1): 1-17. doi: 10.1179/174328009X392930 [15] SEILER J M, FROMENT K. Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors[J]. Multiphase Science and Technology, 2000, 12(2): 117-257. [16] PHAM Q T, SEILER J M, COMBEAU H, et al. Modeling of heat transfer and solidification in LIVE L3A experiment[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 691-701. doi: 10.1016/j.ijheatmasstransfer.2012.11.030 -