Design and Optimization of Cascaded Thermoelectric Generators Based on Heat Pipe Reactor Applications
-
摘要: 基于静默式热管冷却反应堆(简称热管堆)应用背景,结合热管堆能量转换系统几何结构及热工边界条件,利用有限元方法开展两段式和三段式级联热电器件(TEG)设计优化,研究级联式热电器件在不同热流密度条件下热电转换效率及输出功率等热电转换特性。研究结果表明,通过多段级联热电器件PN腿内部不同材料结构优化可以有效提升热电器件的热电转换效率,对于由方钴矿材料和半赫斯勒(HH)材料构成的两段式级联热电器件,在热流密度为162.5 kW/m2的热端边界条件下热电转换效率可以达到15.05%;对于由锑化铋材料、方钴矿材料和HH材料构成的三段式级联热电器件,在热流密度为90 kW/m2的热端边界条件下热电转换效率即可达到15.13%。
-
关键词:
- 级联式热电器件(TEG) /
- 结构优化 /
- 有限元方法 /
- 热管冷却反应堆
Abstract: Based on the application background of silent heat pipe cooled reactor (heat pipe reactor), combined with the geometric structure and thermal boundary conditions of the energy conversion system of heat pipe reactor, the two-stage and three-stage cascaded thermoelectric generators (TEG) are designed and optimized using finite element method. The conversion efficiency and output power of cascaded TEG under different heat flux density conditions are studied. The research results indicate that the conversion efficiency can be effectively improved by optimizing the structure of different materials inside the PN legs of multi-stage cascaded TEG. For the two-stage TEG composed of skutterudite materials and half-heusler materials, the conversion efficiency can reach 15.05% under the hot-end boundary condition with a heat flux of 162.5 kW/m2. For the three-stage TEG composed of bismuth telluride, skutterudite and half-heusler, the conversion efficiency can reach 15.13% under the hot end boundary condition with a heat flux of 90 kW/m2. -
-
[1] 霍蒙,吴舸,袁宏,等. 温差发电技术研究综述[J]. 科技与创新,2020(10): 94-95,97. [2] 陈伟,梁燕,胡长军,等. 新型温差发电装置的结构设计[J]. 热能动力工程,2016, 31(3): 125-128. [3] ZHANG Q H, ZHOU Z X, DYLLA M, et al. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites[J]. Nano Energy, 2017, 41: 501-510. doi: 10.1016/j.nanoen.2017.10.003 [4] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structures to devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515. doi: 10.1021/acs.chemrev.0c00026 [5] XING Y F, LIU R H, SUN Y Y, et al. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability[J]. Journal of Materials Chemistry A, 2018, 6(40): 19470-19478. doi: 10.1039/C8TA07411A [6] 张骐昊,柏胜强,陈立东. 热电发电器件与应用技术: 现状、挑战与展望[J]. 无机材料学报,2019, 34(3): 279-293. [7] CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices[J]. Nature Communications, 2020, 11(1): 2723. doi: 10.1038/s41467-020-16508-x -