高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

316NG不锈钢在560℃液态铅铋合金中的应力腐蚀行为研究

张萍萍 龚宾 赵永福 高军 邓平 吴宗佩

张萍萍, 龚宾, 赵永福, 高军, 邓平, 吴宗佩. 316NG不锈钢在560℃液态铅铋合金中的应力腐蚀行为研究[J]. 核动力工程, 2025, 46(3): 152-159. doi: 10.13832/j.jnpe.2024.050039
引用本文: 张萍萍, 龚宾, 赵永福, 高军, 邓平, 吴宗佩. 316NG不锈钢在560℃液态铅铋合金中的应力腐蚀行为研究[J]. 核动力工程, 2025, 46(3): 152-159. doi: 10.13832/j.jnpe.2024.050039
Zhang Pingping, Gong Bin, Zhao Yongfu, Gao Jun, Deng Ping, Wu Zongpei. Research on Stress Corrosion Behavior of 316NG Steels in Liquid Lead-Bismuth Eutectic at 560℃[J]. Nuclear Power Engineering, 2025, 46(3): 152-159. doi: 10.13832/j.jnpe.2024.050039
Citation: Zhang Pingping, Gong Bin, Zhao Yongfu, Gao Jun, Deng Ping, Wu Zongpei. Research on Stress Corrosion Behavior of 316NG Steels in Liquid Lead-Bismuth Eutectic at 560℃[J]. Nuclear Power Engineering, 2025, 46(3): 152-159. doi: 10.13832/j.jnpe.2024.050039

316NG不锈钢在560℃液态铅铋合金中的应力腐蚀行为研究

doi: 10.13832/j.jnpe.2024.050039
基金项目: 国家自然科学基金青年基金(52301113)
详细信息
    作者简介:

    张萍萍 (1988—),女,硕士研究生,现主要从事冷却剂化学及材料腐蚀方面的研究,E-mail: 411787573@qq.com

    通讯作者:

    赵永福,E-mail: zhaoyongfu0127@126.com

  • 中图分类号: TL341

Research on Stress Corrosion Behavior of 316NG Steels in Liquid Lead-Bismuth Eutectic at 560℃

  • 摘要: 为准确获得奥氏体不锈钢与液态金属的相容性,支撑其服役性能评价,本研究采用高温液态铅铋慢应变速率拉伸试验装置,开展了316NG不锈钢在3种溶解氧浓度,即低氧浓度(溶解氧浓度<7×10−8%,质量百分比)、中等氧浓度(溶解氧浓度为2×10−6%~2×10−7%)和饱和氧浓度(溶解氧浓度为1.0×10−3%~3×10−4%)下560℃液态铅铋合金(LBE)中的应力腐蚀行为研究。研究结果表明,相比于氩气环境,316NG不锈钢在液态LBE中会发生应力腐蚀现象,且随着溶解氧浓度降低,裂纹深度越深,断裂延伸率越小,应力腐蚀敏感性越明显。在低氧浓度和中等氧浓度下,316NG不锈钢的断裂模式为表面沿晶开裂和基体韧性断裂相结合的混合断裂模式;在饱和氧浓度下,316NG不锈钢的断裂模式基本为韧性断裂。316NG不锈钢发生应力腐蚀效应的主要原因是试样表面和裂纹尖端无法形成连续稳定的氧化膜,无法阻止铅铋侵蚀基体,促进沿晶裂纹生长,导致试样提前断裂失效。

     

  • 图  1  高温液态铅铋慢应变速率拉伸试验装置

    Figure  1.  High Temperature Liquid LBE SSRT Test Facility

    图  2  316NG不锈钢的显微组织

    Figure  2.  Microscopic Structure of 316NG

    图  3  拉伸试验试样图和尺寸图

    Figure  3.  Photo and Dimensions of the Tensile Test Specimen

    图  4  不同溶解氧浓度的560℃ LBE应力腐蚀试验后316NG不锈钢试样的断口形貌

    Figure  4.  Fracture Morphology of 316NG Stainless Steel Specimens after Stress Corrosion Testing in LBE at 560℃ with Different Dissolved Oxygen Concentrations

    图  5  不同溶解氧浓度的560℃ LBE应力腐蚀试验后316NG不锈钢试样的标距段剖面形貌

    Figure  5.  Cross-sectional Morphology of the Gauge Section of 316NG Stainless Steel Specimens after Stress Corrosion Testing in LBE at 560℃ with Different Dissolved Oxygen Concentrations

    图  6  316NG不锈钢在不同溶解氧浓度560℃ LBE应力腐蚀试验后的二次裂纹深度

    Figure  6.  Secondary Crack Depth of 316NG Stainless Steels in LBE at 560℃ with Different Dissolved Oxygen Concentrations

    图  7  低氧浓度560℃ LBE中316NG不锈钢的裂纹剖面氧化膜成分分析

    Figure  7.  Composition Analysis of the Oxide Film on the Crack Profile of 316NG Stainless Steel in LBE at 560℃ under Low Oxygen Concentration

    图  8  中等氧浓度560℃LBE中316NG不锈钢裂纹剖面氧化膜成分分析

    Figure  8.  Composition Analysis of the Oxide Film on the Crack Profile of 316NG Stainless Steel in LBE at 560℃ under Medium Oxygen Concentration

    图  9  饱和氧浓度560℃LBE中316NG不锈钢裂纹剖面氧化膜成分分析

    Figure  9.  Composition Analysis of the Oxide Film on the Crack Profile of 316NG Stainless Steel in LBE at 560℃ under Saturated Oxygen Concentration

    表  1  316NG不锈钢的化学成分

    Table  1.   Chemical Composition of 316NG Steel

    元素NiCrMnSiCMoNFe
    质量百分数/%11.7917.341.420.420.0252.450.094余量
    下载: 导出CSV

    表  2  316NG不锈钢的力学性能数据

    Table  2.   Mechanical Property Data of 316NG Steel

    试样编号屈服强度/MPa抗拉强度/MPa断裂延伸率/%I
    316NG-氩气186.20468.6358.65
    316NG-低氧1174.31427.4844.050.34
    316NG-低氧2160.16424.5846.650.31
    316NG-中等氧1170.23427.5147.470.29
    316NG-中等氧2174.31437.7249.380.25
    316NG-饱和氧1170.77443.5652.510.19
    316NG-饱和氧2171.36445.4456.540.13
    下载: 导出CSV

    表  3  图9中各位置的EDS点分析结果

    Table  3.   EDS Point Analysis Results for the Positions in Fig.9

    位置 原子数量百分比/%
    Fe Cr O Ni Pb Bi Mo
    1 31.04 0 61.88 0 3.44 3.64 0
    2 19.65 16.66 61.89 0 0 0 1.80
    3 69.29 18.15 0 12.56 0 0 0
    下载: 导出CSV
  • [1] 吴宜灿,FDS团队. 第四代核能系统铅基反应堆前景展望[J]. 科技导报,2015, 33(14): 12.
    [2] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920
    [3] SERRE I, VOGT J B. Mechanical properties of a 316L/T91 weld joint tested in lead-bismuth liquid[J]. Materials & Design, 2009, 30(9): 3776-3783.
    [4] 王军健,李华鑫,李红菊,等. 静态腐蚀条件下铁素体/马氏体钢和奥氏体不锈钢与液态铅铋合金相容性研究进展[J]. 强激光与粒子束,2023, 35(5): 056001. doi: 10.11884/HPLPB202335.220398
    [5] 刘静. T91和316L钢在液态Pb-Bi共晶合金中应力腐蚀行为研究[D]. 合肥: 中国科学技术大学,2015.
    [6] GORSE D, AUGER T, VOGT J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems[J]. Journal of Nuclear Materials, 2011, 415(3): 284-292. doi: 10.1016/j.jnucmat.2011.04.047
    [7] WANG L, LIAO Q, ZHANG J T, et al. Corrosion behavior of Cr coating on ferritic/martensitic steels in liquid lead-bismuth eutectic at 600 ℃ and 700 ℃[J]. Journal of Materials Research and Technology, 2024, 29: 3958-3966. doi: 10.1016/j.jmrt.2024.02.116
    [8] HAMOUCHE-HADJEM Z, AUGER T, GUILLOT I, et al. Susceptibility to LME of 316L and T91 steels by LBE: effect of strain rate[J]. Journal of Nuclear Materials, 2008, 376(3): 317-321. doi: 10.1016/j.jnucmat.2008.02.031
    [9] 龚星,肖军,王浩,等. 铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理[J]. 核科学与工程,2020, 40(5): 864-871. doi: 10.3969/j.issn.0258-0918.2020.05.020
    [10] 刘金华. 超临界水冷堆条件下310S不锈钢应力腐蚀性能研究[D]. 成都: 四川大学,2019.
    [11] DAROLIA R, WALSTON W S. Effect of specimen surface preparation on room temperature tensile ductility of an Fe-containing NiAl single crystal alloy[J]. Intermetallics, 1996, 4(7): 505-516. doi: 10.1016/0966-9795(96)00051-9
    [12] REHBINDER P A. Investigation of the influence of the surface energy of a crystal on its mechanical properties when the surface tension of its faces is lowered by the introduction of surface-active substances into working medium[C]//Proceedings of the 6th Conference of Russian Physicists, Compendium of Lectures. Moscow: Gosizdat, 1928.
    [13] MÜLLER G, SCHUMACHER G, ZIMMERMANN F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels[J]. Journal of Nuclear Materials, 2000, 278(1): 85-95. doi: 10.1016/S0022-3115(99)00211-1
    [14] ZHANG J, LI N. Oxidation mechanism of steels in liquid-lead alloys[J]. Oxidation of Metals, 2005, 63(5-6): 353-381. doi: 10.1007/s11085-005-4392-3
    [15] MARTÍN-MUÑOZ F J, SOLER-CRESPO L, GÓMEZ-BRICEÑO D. Corrosion behaviour of martensitic and austenitic steels in flowing lead-bismuth eutectic[J]. Journal of Nuclear Materials, 2011, 416(1-2): 87-93. doi: 10.1016/j.jnucmat.2011.01.108
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 修回日期:  2024-07-07
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回