高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图神经网络的铅铋快堆上腔室三维热分层现象非线性降阶分析

曾付林 赵鹏程 李玲莉 刘紫静 李卫

曾付林, 赵鹏程, 李玲莉, 刘紫静, 李卫. 基于图神经网络的铅铋快堆上腔室三维热分层现象非线性降阶分析[J]. 核动力工程, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044
引用本文: 曾付林, 赵鹏程, 李玲莉, 刘紫静, 李卫. 基于图神经网络的铅铋快堆上腔室三维热分层现象非线性降阶分析[J]. 核动力工程, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044
Zeng Fulin, Zhao Pengcheng, Li Lingli, Liu Zijing, Li Wei. Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network[J]. Nuclear Power Engineering, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044
Citation: Zeng Fulin, Zhao Pengcheng, Li Lingli, Liu Zijing, Li Wei. Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network[J]. Nuclear Power Engineering, 2025, 46(3): 86-94. doi: 10.13832/j.jnpe.2024.050044

基于图神经网络的铅铋快堆上腔室三维热分层现象非线性降阶分析

doi: 10.13832/j.jnpe.2024.050044
基金项目: 核反应堆系统设计技术重点实验室运行基金(KFKT-05-FW-HT-20220014)
详细信息
    作者简介:

    曾付林(2002—),男,硕士研究生,现主要从事先进反应堆物理与热工安全分析研究,E-mail: 3077819552@qq.com

    通讯作者:

    赵鹏程,E-mail: pengcheng.zhao@usc.edu.cn

  • 中图分类号: TL33

Nonlinear Reduced-order Analysis of Three-dimensional Thermal Stratification in the Upper Plenum of Lead-bismuth Cooled Fast Reactor Based on Graph Neural Network

  • 摘要: 铅铋快堆上腔室的热分层现象对堆内构件的结构安全性和系统余热排出能力具有重要影响,需重点分析。本文首先基于计算流体动力学(CFD)程序FLUENT得到铅铋快堆上腔室热分层现象的高精度全阶快照,然后利用图神经网络(GNN)构建的图自编码器(GAE)对快照进行非线性降阶,并将非线性降阶后的重构结果与本征正交分解(POD)的线性降阶结果进行对比分析,最后通过结合多层感知机对热分层快照开展在线状态识别与预测分析。结果表明,由于GNN具有高度的非线性,使其在大规模CFD数据的非线性降阶方面具备独特优势,其1阶模态重构精度与POD的30~50阶基函数的重构精度相当;在在线阶段,以472 ms的时长即可完成对热分层快照的特征识别和预测,且预测精度与直接重构精度相近。相关研究成果可为铅铋快堆热分层现象演化机理分析及后果预测提供新的分析方法支撑。

     

  • 图  1  GNN特征聚合过程

    Figure  1.  Feature Aggregation Process in Graph Neural Networks

    图  2  GAE架构

    Figure  2.  GAE Architecture

    图  3  TSTF的实验区域

    Figure  3.  Experimental Area of the TSTF

    图  4  实验段垂直截面与模型结构

    Figure  4.  Vertical Section of Test Section and Model Structure

    图  5  网格结构与敏感性分析

    Figure  5.  Mesh Structure and Mesh-Sensitivity Analysis Results

    图  6  上腔室温度分布云图

    Figure  6.  Temperature Distribution of the Upper Plenum

    图  7  损失函数下降趋势

    Figure  7.  Decreasing Trend of the Loss Function

    图  8  测点位置温度重构对比结果

    Figure  8.  Temperature Reconstruction at Measurement Point

    图  9  GAE与POD重构精度对比

    Figure  9.  Comparison of Reconstruction Accuracy between GAE and POD

    图  10  5~45 s重构结果及误差分布云图

    Figure  10.  Reconstruction Results and Error Distribution Contours at 5~45 s

    图  11  低维特征随时间的变化

    Figure  11.  Change of Low-Dimensional Features over Time

    图  12  状态识别迭代轨迹

    Figure  12.  State Identification Iteration Trajectory

    图  13  第35秒和第45秒时的预测结果及误差分布云图

    Figure  13.  Prediction Results and Error Distribution Contours at 35th Second and 45th Second

    表  1  结构参数和实验参数数据

    Table  1.   Structural Parameters and Experimental Data

    参数名 实验设计数据 ABTR数据 比值
    上腔室高度/m 1.20 8.02 0.15
    出口高度/m 0.8000 5.347 0.15
    上腔室直径/m 0.3147 4.910 0.065
    中间构件直径/m 0.1455 2.270 0.065
    入口直径/m 0.0127(×3个) 0.3710(×3个) 0.009
    出口直径/m 0.0160(×2个)
    非保护性事故流量/(m3·s−1) 0.001429 0.3775 0.0038
    堆芯冷却剂流速/(m·s−1) 3.759 0.296 12.7
    腔室热流体温度/℃ 300 575 0.52
    腔室冷流体温度/℃ 250 525 0.48
    佩克莱数(Pe 1616 12520 0.13
    雷诺数(Re 28349 788237 0.04
    Ri 1616 1616 1
    下载: 导出CSV
  • [1] WU Z Y, LU C H, MORGAN S, et al. A status review on the thermal stratification modeling methods for Sodium-cooled Fast Reactors[J]. Progress in Nuclear Energy, 2020, 125: 103369. doi: 10.1016/j.pnucene.2020.103369
    [2] DONG Z Y, QIU H R, WANG M J, et al. Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)[J]. Annals of Nuclear Energy, 2022, 174: 109176. doi: 10.1016/j.anucene.2022.109176
    [3] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [4] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [5] ZWIJSEN K, UITSLAG-DOOLAARD H, ROELOFS F, et al. Fast reactor multi-scale and multi-physics modelling at NRG[J]. Nuclear Engineering and Design, 2023, 410: 112389. doi: 10.1016/j.nucengdes.2023.112389
    [6] LUO X, WANG C, ZOU Z R, et al. Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor[J]. Nuclear Science and Techniques, 2022, 33(2): 18. doi: 10.1007/s41365-022-01008-y
    [7] 柏云清,李文博,李文东,等. 池式铅基堆热分层现象研究综述[J]. 核科学与工程,2023, 43(2): 286-297. doi: 10.3969/j.issn.0258-0918.2023.02.007
    [8] LIU D X, MARTHALER P G, CLASS A G, et al. Simulation of stratification phenomena with a spectral Fourier–Chebyshev method on the background of a lead-cooled fast reactor[J]. Annals of Nuclear Energy, 2023, 192: 109931. doi: 10.1016/j.anucene.2023.109931
    [9] HU R. Development of a reduced-order three-dimensional flow model for thermal mixing and stratification simulation during reactor transients: AC02-06CH11357[R]. Argonne: Argonne National Lab., 2017.
    [10] ZOU L, NUNEZ D, HU R. Development and validation of SAM multi-dimensional flow model for thermal mixing and stratification modeling: ANL-NSE-20/19[R]. Argonne: Argonne National Lab., 2020.
    [11] HU R. Progress report on SAM reduced-order model development for thermal stratification and mixing during reactor transients: ANL/NE-17/29[R]. Argonne: Argonne National Lab., 2017.
    [12] HU R. Three-dimensional flow model development for thermal mixing and stratification modeling in reactor system transients analyses[J]. Nuclear Engineering and Design, 2019, 345: 209-215. doi: 10.1016/j.nucengdes.2019.02.018
    [13] LORENZI S, CAMMI A, LUZZI L, et al. A reduced order model for investigating the dynamics of the Gen-IV LFR coolant pool[J]. Applied Mathematical Modelling, 2017, 46: 263-284. doi: 10.1016/j.apm.2017.01.066
    [14] 杨涛,赵鹏程,赵亚楠,等. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程,2023, 44(2): 48-53.
    [15] YANG T, ZHAO P C, ZHAO Y N, et al. Development of reduced-order thermal stratification model for upper plenum of a lead–bismuth fast reactor based on CFD[J]. Nuclear Engineering and Technology, 2023, 55(8): 2835-2843. doi: 10.1016/j.net.2023.05.002
    [16] FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data[J]. Physics of Fluids, 2020, 32(9): 095110. doi: 10.1063/5.0020721
    [17] HU J W, ZHANG W W. Mesh-Conv: convolution operator with mesh resolution independence for flow field modeling[J]. Journal of Computational Physics, 2022, 452: 110896. doi: 10.1016/j.jcp.2021.110896
    [18] KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries[J]. Physics of Fluids, 2021, 33(2): 027104. doi: 10.1063/5.0033376
    [19] BARWEY S, SHANKAR V, VISWANATHAN V, et al. Multiscale graph neural network autoencoders for interpretable scientific machine learning[J]. Journal of Computational Physics, 2023, 495: 112537. doi: 10.1016/j.jcp.2023.112537
    [20] PICHI F, MOYA B, HESTHAVEN J S. A graph convolutional autoencoder approach to model order reduction for parametrized PDEs[J]. Journal of Computational Physics, 2024, 501: 112762. doi: 10.1016/j.jcp.2024.112762
    [21] TOMCHIK C, VEGENDLA P, BUCKNOR M, et al. Benchmark specification for select experiments conducted at the university of Wisconsin-Madison thermal stratification test facility: ANL-ART-253[R]. Argonne: Argonne National Lab., 2022.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-27
  • 修回日期:  2024-07-12
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-06-09

目录

    /

    返回文章
    返回